ACOUSTIC SOLUTIONS.

TABLE OF CONTENTS.

04	ACOUSTIC ENCO
14	SILENCERS
74	ACOUSTIC LOUV

OLSURES

VERS

ACOUSTIC ENCLOSURES

ACOUSTIC ENCLOSURES

Introduction

Noise is often conveniently defined as a sound which is unwanted by the recipient. Unwanted noise is no longer something that has to be endured, it can and must be controlled.

In any surroundings, the primary cause of complaint due to noise is nearly always linked to excessive sound levels, either within or external to premises. Any problem involving the avoidance of unwanted noise may be tackled by a systematic approach.

Enclosing the sound source can sometimes be the most effective method of noise control. To be most effective the source must be totally enclosed. It is however, necessary with a lot of equipment to provide ventilation for cooling. Unless only small sound reduction is required, any openings for ventilation must not degrade the performance of the enclosure and should, therefore, either contain attenuators or acoustic louvers.

When only a small reduction is required a partial enclosure, which provides natural ventillation, may be sufficient.

Application

Acoustic Enclosures are designed and built for optimum noise control and may be used to enclose the noise, in the case of equipment operations. Complete mechanical isolation between source and enclosure is required. Preferably the machine itself should be vibration isolated from the floor and its services.

The pre-fabricated modular units, enables it to be constructed in a variety of sizes which is suitable for site assembly.

ACOUSTIC ENCLOSURE

Description

The acoustic panels consist of outer and inner walls with acoustic infill in between are modularly designed and built to reduce noise or enclose the noise.

Construction

The standard acoustic panels used for both walls and roof are 500mm to 1080mm wide (for 50mm thickness) constructed of an outer wall of galvanized steel sheet metal Ga.16. Acoustic infill is retained behind an inner wall of either perforated or solid galvanized steel sheet metal Ga.22.

The assembly of panels is on site, by others. Safid will provide full details of panel configuration and assembly.

Technical Data

Standard Width (W): 500 mm to 1080 mm (for 50 mm thick)

Standard Thickness (T): 50 / 100 / 150 / 200

Length (L): Up to 2500 mm

Weight: Approx. 18 kg/m² (for 50 mm thick)

Color: Supplied in galvanized steel finish and epoxy paint in various colors.

Accessories: Acoustic doors in standard thickness. Assembly rails windows.

Description

Use

The Acoustic Enclosure, type LMV, is used where both simple and effective sound screening or noise encapsulation is desired. The flexible system makes the machine room walls particularly viable for the construction of separate rooms in production and storage locations as well as offices for shop foremen, controls room, crew's quarters, storage rooms, etc. and for noise encapsulation of machines and production systems by ventilators, compressors, generating systems, etc.

Benefits

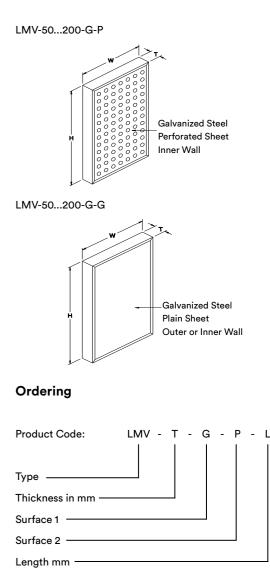
The modular construction of Acoustic Enclosure leads to the system being:

- able to be set up and installed on-site
- able to be part of both small as well as large
- encapsulations
- able to be expanded or changed in step with production expansions, etc.
- able to be set up as an extension of other elements • able to be delivered either as parts or as a complete job

All in all, it gives great flexibility, which makes the system ideal for countless purposes.

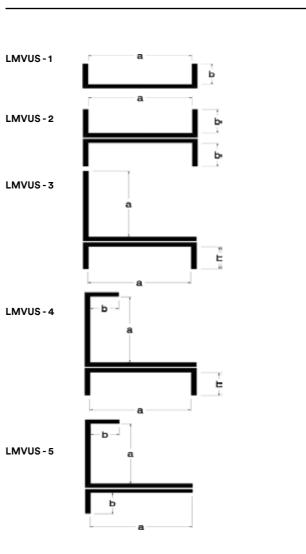
Design

Acoustic Enclosures are modularly designed. The exterior sides of the modules consist of a galvanised steel plate, which is glued onto mineral wool. The modules are also available in perforated steel platesAssembly is performed via a supplied channel, and the elements can moreover be mounted both vertically (as in the picture) and horizontally.

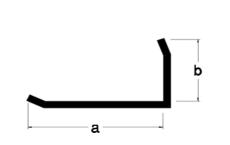

The elements are supplied in a standard width of 500mm to 1080mm. The elements can be supplied as needed in lengths of up to 3000mm. Adjustments to the elements can easily be performed during installation using an electric saw. LMV can be supplied with protective sheeting.

ACOUSTIC ENCLOSURE

Dimensions



ACOUSTIC ENCLOSURES


ســافيد SAFID

I

LMVUS

LMVUD

Table 1: Sound Transmission Loss in dB

Ture	Octave Centre Frequency, fm in Hz								
Туре	63	125	250	500	1000	2000	4000		
LMV - 50 - G - P	17	20	20	24	25	27	32		
LMV - 50 - G - G	21	25	29	32	36	38	42		
LMV - 100 - G - P	23	22	22	29	29	32	39		
LMV -100 - G - G	28	30	32	39	39	44	49		
LMV - 150 - G - P	26	24	31	36	36	42	47		
LMV - 150 - G - G	33	37	41	48	48	50	50		
LMV - 200 - G - P	28	25	32	34	34	44	49		
LMV - 200 - G - G	35	39	42	49	49	50	50		

Noise Reduction

The Table shows the sound transmission loss figures ± 3dB for the different types of elements. For elements with epoxy paint, the values for galvanized steel or perforated galvanized steel can used.

For example. LMV-50-G-P: Plain galvanized steel sheet on one side, and perforated steel sheet on the other side.

Table 2: Selection of Combination

T 1 1 1 1 1 1 1 1 1 1 	Surf	ace 1	Surface 2			
Thickness in mm	G	PL	G	Р	PL	
50	x		x	x	x	
50		x		x	x	
100	x		x	x	x	
100		x		x	x	
150	x		x	x	x	
150		x		x	x	
200	x		x	x	x	
200		x		x	x	

G = Galvanized Steel

PL = Epoxy Coated Finish

P = Perforated Galvanized Steel

Construction Variants

LMVUS - 1: railing to be mounted horizontally on the floor.

LMVUS - 2 : railing to be mounted on horizontal or vertical position between walls or ceiling panels.

LMVUS - 3 : railing to be mounted on top of the wall panels.

LMVUS - 4 : vertical railing typical of 3 pieces to be mounted in dequence on 3 corners of the wall.

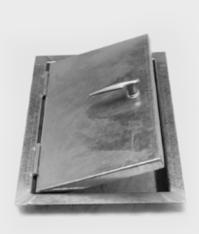
LMVUS - 5 : vertical railing to be mounted on the last corner of the walls during assembly.

Dimensions

Standard Dimensions

a (mm)	b (mm)				
55	35				
105	35				
155	35				
205	35				

LMVUD : angle railing for exterior edging around on corners of wall and ceiling panels.

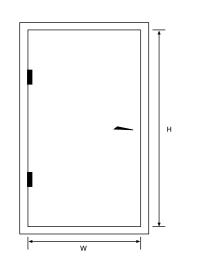

Dimensions

Standard Dimensions

a (mm)	b (mm)
85	45
135	45
185	45
235	45

ACOUSTIC PANEL ACCESSORIES

Description


Machine room doors are double walled door panel with mineral wool insulation. Designed to provide access for machine rooms and enclosure.

Construction

Machine room doors are supplied in standard 50 mm thicknesses, and can be installed as needed with 2-layers made-to-measure double glazing. Outer and inner walls are manufactured from galvanized steel sheet metal 3mm thick. Closure by double lever locking devices which can be operated from both sides. Can be supplied with double glass as option.

Dimensions

12

Standard Sizes

	Doorway Size		
	W (mm)	H (mm)	
Standard	605	805	
	605	1205	
Single Leaf	605	1605	
	605	1805	
Spec. Single Leaf	800	1961	
Double Leaf	1595	1961	

ســافيد SAFID

Basic Principle of Sound

Noise is an unavoidable part of everyday life and technological development has resulted in an increase in noise level from machines, factories, traffic etc. It is therefore important that steps towards a reduction in noise are taken, so that noise is not something we have to accept. In connection with this fight against noise, you must have some basic knowledge about how and where is noise generated, transmitted and attenuated in system in order to be able to select the proper principle and products.

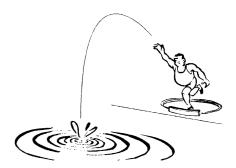
This description does not claim to teach you how to calculate and attenuate noise in a ventilation system - there are books available on this.

Source

Waves on Water We throw a stone onto completely calm water.

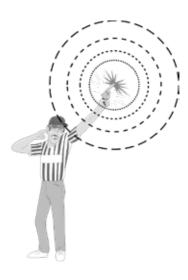
Waves in Air We fire a starter's gun.

This description only aims at providing information about a few simple rules and hints, which together with common sense can be enough for simple installations.


To take a simple analogy: noise transmission consists of waves in a medium, i.e. air, which we can not see. This is very similar to the way waves spread on water.

Let us examine the analogy, to make the comparison clearer:

Distribution

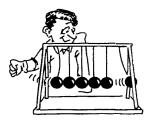

Waves on Water

Waves on water spread out in increasing concentric circles from the centre, where the stone hit the water.

Waves in Air

Sound waves spread out in the air, in all directions, in an increasing ball from the centre, i.e. the gun.

PRINCIPLES OF SOUND


Energy Transport

Waves on Water

Kinetic energy is transmitted from molecule to molecule in the water. They bounce against each other. Molecules move back and forwards. Energy spreads from the source.

Waves in Air

Kinetic energy is transmitted from molecule to molecule in the air. They bounce against each other, and move back and forwards. Energy spreads from the source.

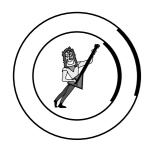
Distance

Waves on Water

When waves depart from the centre, where the stone hit, the wave height becomes lower and lower, until they are invisible. The water is calm again.

Waves in Air

When sound waves depart from the source, the starter's gun, wave movement drops off and the sound becomes weaker and weaker until it can no longer be heard.

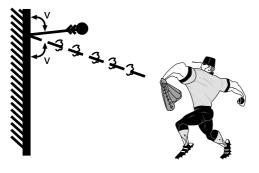

Intensity

Waves on Water

The energy which started the wave propagation, or the power needed to keep it going, is distributed across and increasing area as the distance, the radius, increases

Waves in Air

The energy which started the wave propagation, or the power needed to keep it going, is distributed across an increasing volume as the distance, the radius, increases.


Obstruction in the Way

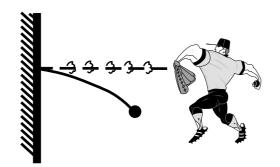
Waves on Water

If waves in water encounter the side of a boat or jetty, they will be reflected at the same angle as they met the obstruction.

Waves in Air

If waves in air encounter a wall, they will be reflected at the same angle as they met the obstruction.

In the same way as when you bounce a ball on the wall.


Obstruction in the Way

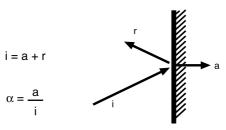
Waves on Water

If waves in water encounter the side of a boat or jetty, they will be reflected at the same angle as they met the obstruction.

Waves in Air

If waves in air encounter a wall, they will be reflected at the same angle as they met the obstruction.

In the same way as when you bounce a ball on the wall.


Absorption

Sound can be absorbed

When sound waves meet a soft, porous wall (mineral wool etc.), the vibrating molecules penetrate the surface layer, and are then braked by friction against the material fibres.

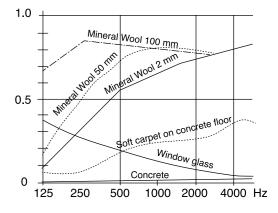
The part of the energy which is thus absorbed is converted to heat in the material, and the rest is reflected back into the room. This type of damping, where the sound is braked by the soft surface layer, is referred to as porous absorption.

The sound absorption ability of different materials varies. This property is expressed as the sound absorption factor of the material.

If nothing is absorbed, everything is reflected, then a = 0 which makes = 0:

$$i = a + 0$$
 $\alpha = \frac{a}{a} = a$

If nothing is absorbed, everything is reflected, then a = 0 which makes = 0:



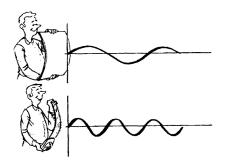
An open window can be said to have a = 1, all sound from the room which arrives at the window disappears out!

In hard materials, such as concrete or marble surfaces, virtually no sound energy is absorbed, everything is reflected and the a value is near to zero. In rooms with hard surfaces, the sound bounces for a long time before it dies out. The room has a long reverberation time and we get a strong, unpleasant echo. The sound level caused by normal sound sources becomes high.

S

In soft materials, such as thick mineral wool boards, the opposite happens. The a value is close to 1. Sometimes, excessively damped, soft rooms are unsuitable "You can't hear what you say". Avoid extremes - the reverberation time in a room should be chosen to suit the activities there.

PRINCIPLES OF SOUND


Frequency and Wavelengths

As we see in the tables above, the damping ability varies with the frequency of sound. It could be a good idea to describe the concept of frequency in greater detail.

A sound source influences the surrounding air, and makes it vibrate. The character of the sound depends on the variations in pressure which occur in the air.

Let us assume that the sound source is a vibrating plate - the changes in pressure, or the sound will then have the same frequency as the vibrations in the plate. The strength of the sound will depend on the amount that the plate vibrates, i.e. the amplitude of the movement. Let us start off with that:

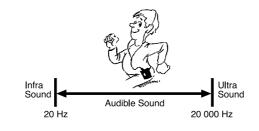
If there is only one note, of a single frequency, the pressure will vary sinusoidally, so a pure note is referred to as a sine wave.

The characteristics of sound propagation are: • frequency (f),

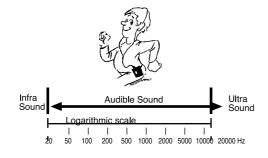
which is measured in Hertz, Hz, (s-1), (and specifies the number of times a second that a new sound wave arrives).

• wave length (λ , "lambda"),

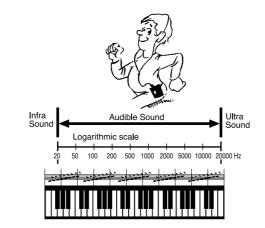
which is measured in metres, **m**, (and specifies the distance between two similar points on the curve).


 speed of sound (c) which is measured in m/s, (and specifies the speed of movement of the sound wave).

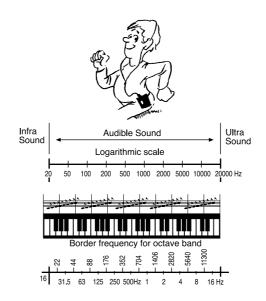
These three variables have the following relationship: $c = f \cdot \lambda$ The speed of sound in air is also a function of pressure and temperature.


At normal air pressure and + 20°C: c ≈ 340m/s.

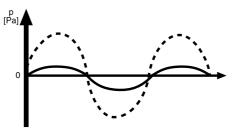
A young person with normal hearing can hear sounds at frequencies from 20-20 000 Hz, i.e. (in air) at wavelengths ranging from 17 m (at 20 Hz) to app. 17mm (at 20 kHz).


SAFID

We perceive changes in sound frequency on a logarithmic scale, i.e. it is the relative frequency and not the difference in Hz which determines how a change in note is perceived. A doubling of frequency is perceived as being the same, irrespective of whether it is a change from 100 to 200 Hz, 1000 to 2000 Hz or 10 to 20 kHz.



The logarithmic scale is usually sub-divided into octaves. i.e. in scales where the top note is twice the frequency of the bottom note. This has been customary in music for a long time.



Frequency and Wavelengths

The Concept of Decibel

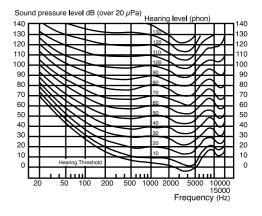
The stronger the sound is, the harder the particles of air will bump into each other

Sound pressure changes in the audible area can vary within very wide limits. Some sounds are so weak that we can not hear them. The so-called audible limit varies with frequency and is 20 mPa at about 1000 Hz.

Other sounds are so loud that we risk hearing damage. The pain limit, the sound pressure which causes pain in your ears also varies with frequency, but is about 20 Pa at 1000 Hz. This means that it is a million times louder than the weakest sound we can perceive.

We also perceive changes in sound pressure on a logarithmic scale. A sound level concept using the decibel (dB) as the unit, has been created to express comparable values.

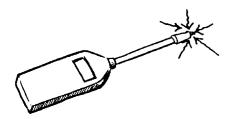
The dB unit, which is used in many different applications, is generally defined as: $10 \cdot \log (X/X_0)$, where X is the unit measured, i.e. the sound pressure, and X0 is a reference level expressed in the same units. The reletionship of X/X0 is thus dimensionless. The reference level from which the dB unit is specified, is given instead. This means that you generally express the level in dB (above X_{o}).


Our Perception of Sound

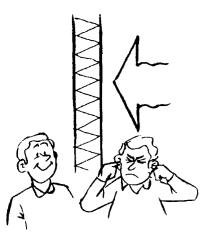
We react differently to two sounds which have the same sound pressure level and different frequencies.

Curves which describe how people normally perceive sounds of varying strength and frequency have been constructed through experiments on large numbers of volunteers. These so-called hearing level curves are designated by the sound pressure level for each curve at a frequency of 1 kHz. The unit used for the curves is the phon.

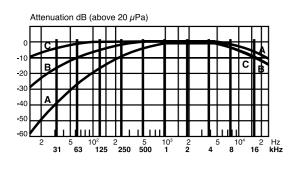
Hearing Level Curves


Example:

The sound pressure level 70 dB at 50 Hz is normally perceived as being as loud as 50 dB at 1000 Hz.


PRINCIPLES OF SOUND

Sound Levels



Several methods are used to compare the disturbance caused by two different sounds, and where the perception of the ear to noise has been modelled.

The simplest way is to compare their "weighted" sound levels. The incoming sound is filtered in an electronic filter to reduce the components, mostly the low-frequency components, where the ear is not so sensitive, and amplify the components between 1 and 4 kHz, where we are most sensitive.

Sound meters usually have three electronic filters, A-, B- and C-filter. The A-filter is mostly used these days, where the result, the "weighted" sound level, is expressed in dB (A).

Sound

Sound is such a common part of everyday life that we rarely appreciated all of its functions. It provides enjoyable experiences such as listening to music or to the singing of birds. It enables spoken communication and it can alter of warn us - for example, with the ringing of a telephone, or a wailing siren. Sound also permits us to make quality evaluations and diagnoses - the chattering valves of a car, a squeaking wheel, or a heart murmur.

Sound and Noise

Yet, too often in our modern society, sound annoys us. Many sounds are unpleasant or unwanted - these are called noise. However, the level of annoyance depends not only on the quality of the sound, but also our attitude towards it.

For example the type of music enjoyed by some people could be regarded as noise by others, especially if it is loud. But sound doesn't need to be loud to annoy. A creaking floor, a scratch on a record, or the intermittent sound of a dripping tap can be just as annoying as loud thunder. The judgement of loudness will also depend on the time of the day. For example, a higher level of noise will be tolerated during the day than at night.

Good Acoustic Design

Adequate noise control in a duct system is not difficult to achieve during the design of the system, providing the basic noise control principles are understood. Despite the addition of noise control items in more and more building designs, complaints about HVAC system noise are still common. Investigations into noise complaints by acoustical professionals have found that, in many cases, the correct equipment and materials were used, but they were not properly integrated into a quiet system.

Virtually every survey on building comfort finds that excessive HVAC system noise levels are responsible for more complaints than any other aspect of the building environment. To minimize the possibility that design decisions could cause noise problems, the design team must consider the acoustical impacts of all design decisions, whether they are part of the schematics, design development, working drawings, or construction administration phases of the project.

Therefore, noise control design should begin during the schematic and design development phases and continue throughout the entire design process.

PRINCIPLES OF NOISE CONTROL

Noise Control Principles

There are three distinct stages to the noise control process:

- 1. Source.
- 2. Transmission.
- 3. Reception

Noise control problem involves examining the noise sources,(fan noise, duct noise, diffuser noise, and building noise) the sound transmission paths, and the receivers. For most HVAC systems, the sound sources are associated with the building mechanical and electrical equipment.

Noise travels from the source to the receiver through many possible sound transmission paths,(structureborne path through floor, airborne path through supply air system, duct breakout from supply air duct, airborne path through return air system, and airborne path through mechanical equipment room wall). Sound sources are the components that either generate noise, like electric motors, or produced noise when air passes by them, like dampers or diffusers. Sound receivers are generally the occupant of the building.

The noise control engineers are most often constrained to modifying the sound transmission paths as a mean of achieving the desired sound levels in occupied areas of a building.

NOISE CONTROL TERMINOLOGY

Definitions

Attenuation

The reduction of sound level per unit distance by divergence, diffusion, absorption, or scattering.

A-weighted Sound Level

The sound level measured using the A-weighting network of a sound level meter. For broadband sounds, the A-weighted sound level indicates approximate relative loudness.

Background Noise

It is the irreducible noise level measured in the absence of any building occupants when all of known sound sources have been turned off.

Breakout Noise

The transmission of fan or air system noise through duct walls.

Criteria

Noise levels which are subjectively or objectively acceptable in a given environment. The most commonly used criteria are Noise Criteria Curves (NC Levels), Noise Rating Curves(NR Levels) and dB(A).

Decibel (dB)

Commonly, the unit used to measure sound. It is used to quantify both sound pressure level and sound power level.

Direct SPI

Noise which is transmitted directly from a source (i.e. a grille or diffuser) without reflection.

Ductborne Noise

Noise which is transmitted along ductwork, both upstream and downstream of fan.

Flanking Noise (Breakout)

Noise transmitted through a barrier, often a fan casing or ductwork. Any indirect noise path which tends to devalue noise control measures used to reduce tansmission along the more obvious paths.

Frequency (Hz.)

The pitch of sound. The number of sound pressure waves arriving at a fixed point per second.

Insertion Loss

A measure of the noise reduction capability of an attenuator (sometimes of a partition) so named.

After the method of testing where a section of ductwork is replaced by an attenuator between two test rooms. One room contains the noise source and the other the sound level measuring equipment. The difference in recorded noise level is said to be the insertion loss due to the insertion of the attenuator in the system.

Noise Outlet

Usually a grille or a diffuser. Any opening acting as a terminal element on either an extract or supply system.

Octave Bands

Subdivisions of the frequency range each identified by its mid (or centre) frequency. By international agreements these comprise 63, 125, 250, 500, 1k, 4k, and 8k Hz. and sometimes 31.5 Hz.

Regenerated Noise

Noise in addition to that produced by the fan, caused by air passing over fixed duct elements such as blades on grilles, dampers, air turns, splitters in attenuators, etc.

Reverberant SPL

Noise which is transmitted by reflection off room surfaces.

Reverberant Time

A measurement of the acoustic "reflectiveness" of a room.

Sound Power Level (SWL)

A theoretical assessment of sound produced at source calculated from the measured sound pressure levels at known distances from the source under known acoustic conditions.A level which depends only on the source and is independent of the environment or location. The sound power level of a fan is therefore very useful information since any level quoted can be compared directly with data from any other manufacturer.

Sound Pressure Level (SPL)

A measured sound level which is an indication only of the noise produced at source since environmental factors such as reverberation and distance from the source have affected the meassurement. The sound pressure level of a fan is not very useful since environmental factors apparent when the unit was measured may or may not be present in the actual location of the plant.

Acoustic Design Procedures

Good acoustical design requires broad cooperation in the areas of architecture, structural, mechanical, electrical engineering, and acoustics. Delaying the acoustical design until after the structural system design is essentially complete sometimes leaves the design team with little flexibility in selecting and locating cost-effective noise control equipment and materials.

In order to effectively deal with each of the different sound sources and related sound paths associated with an HVAC system, the following design procedures are suggested :

1. Determine the design goal for HVAC system noise for each critical area according to its use and construction. Use Table 14 to specify the desirable NC levels.

2. Relative to equipment that radiates sound directly into a room, select equipment that will be quiet enough to meet the desired design goal.

3. If central or roof-mounted mechanical equipment is used, complete an initial design and layout of the HVAC system, using acoustical treatment where it appears appropriate.

4. Starting at the fan, appropriately add the sound attenuations and sound power levels associated with the central fan, and duct elements between the central fan and the critical room to determine the corresponding sound pressure levels in the room. Be sure to investigate the supply and return air paths. Investigate possible duct sound breakout when central fans are adjacent to the critical room or roof-mounted fans are above the critical room.

5. If the mechanical equipment room is adjacent to the critical room, determine the sound pressure levels in the room associated with sound transmitted through the mechanical equipment room wall.

6. Add the sound pressure levels in the critical room that are associated with all of the sound paths between the mechanical equipment room or roof-mounted unit and the critical room.

7. Determine the corresponding NC level associated with the calculated total sound pressure levels in the critical room.

8. If the NC level exceeds the design goal, determine the octave frequency bands in which the corresponding sound pressure levels are exceeded and the sound paths that are associated with these octave frequency bands.

9. Redesign the system, adding additional sound attenuation to the paths which contribute to the excessive sound pressure levels in the critical room. 10. Repeat steps 4 through 9 until the desired design goal is achieved.

11. Steps 3 through 10 must be repeated for every room that is to be analyzed.

12. Make sure that noise radiated by outdoor equipment will not disturb adjacent properties.

13. With respect to outdoor equipment, use barriers when noise associated with the equipment will disturb adjacent properties.

14. If mechanical equipment is located on upper floors or is roof-mounted, vibration isolate all reciprocating and rotating equipment. It may be necessary to vibration isolate mechanical equipment that is located in the basement of the building.

A sound analysis should be carried out starting from the fan or noise source having ducted connections to the room of interest.

It is strongly recommend that sound level requirements for NC 30 or below be calculated out by SAFID so as to ensure a complete check against noise criteria levels.

Fan In-Duct Sound Power Level

Obtain from the fan manufacturer's catalogue information, or calculate the approximate In-duct Sound Power Level from Table 1.

In both case the approximate duty of the fan needs to be known.

These figures are inserted in line a. Some manufacturers present noise data as a Sound Pressure Level which needs to be converted by applying the relevant correction factor.

Duct System Between the Fan and the **Critical Noise Outlet**

Select the most critical noise outlet in the duct system, normally the noise outlet nearest to the fan, and estimate the sound power reduction which occurs along the duct path to this outlet and the outlet itself. Using the following information assess the total duct attenuation.

Straight unlined sheet metal ducts provide a degree of attenuation. This is frequency dependent and varies with the minimum duct dimension and duct length. Approximate attenuation of straigth unlined rectangular sheet metal ducts per meter run is shown in Table 2.

To avoid noise breakout problems in the duct attenuation taken should be limited to approximately 15dB.

Circular sheet metal duct attenuation shown in Table 3. Bends provide attenuation as shown in Tables 4 and 5. Duct and bend attenuation figures should be entered against lines b.

At low frequencies some of the sound power on reaching the critical noise outlet is reflected back along the duct. The degree of attenuation due to this phenomenon is dependent on frequency and the total area of the outlet. The attenuation from Table 6 is inserted in line c.

The Sound Power Level leaving the critical outlet is obtained from e=a-(b+c)

Calculate the Room Effect

In a room the sound pressure waves will reach the listener along two paths:

1. Directly, reducing as the (distance)2 from the noise source, known as the Direct Sound Pressure Level.

2. By multiple reflections off the room surfaces and room contents, which will depend upon the size of the room and the reverberation time, known as the Reverberant Sound Pressure Level.

To estimate the Direct Sound Pressure Level.

Calculate the percentage of the total sound leaving the critical noise outlet. This is approximately equal to the percentage of the fan air volume which passes through the critical outlet.

Table 7 gives the factors to be inserted in line f.

Estimate the distance between the nearest listening position and the critical outlet, and using Table 8, insert the distance factors in line g. Unless the specification states otherwise, the commonly applied distance is 1.5 meters.

By examining the position of the nearest outlet in relation to the walls and ceiling of the room will affect the resultant sound pressure level, due to directivity. Select the location type (A, B, or C) using Table 9, which is closest to matching the position of the critical outlet in the room.

Using the charts for the chosen location type and outlet area, insert the factors obtained in line h.

The Direct Sound Pressure Level in the room in line i is equal to the sum of the Sound Power Level leaving the Critical Outlet in line e and lines f g h.

To estimate the Reverberant Sound Pressure Level.

For the fan system in question, Calculate the percentage of the sound emerging from all the noise outlets in the room served by the fan.

This approximates to the percentage of the fan air volume serving the room under investigation.

Using Table 10 insert the factor in line k.

The amount of reflection or absorption of the sound emerging from the noise outlets depends upon the volume and the reverberation time (which is a function of the amount of absorption) of the room. Table 11 and 12 give the factors related to these which are inserted in lines I and m respectively.

The factors tabulated at each Octave Band in lines k,I and m are now added together to give the Total **Reverberant Factors.**

The Reverberant sound Pressure level (line o) in the room is equal to the sum of the Sound Power Level leaving the Critical Outlet (line e) and the Total Reverberant Factors (lines k + l + m).

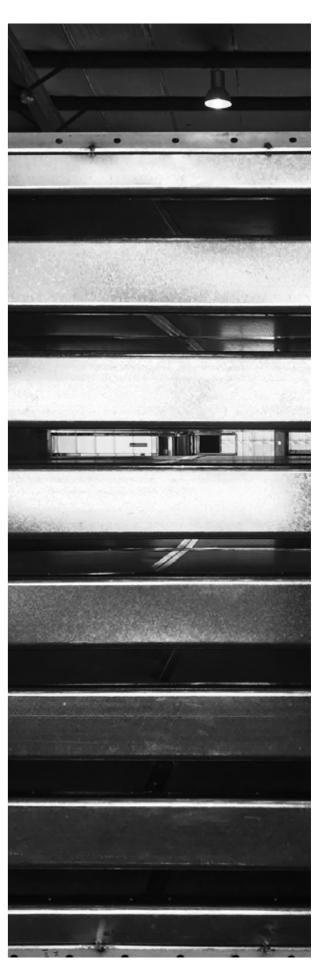
To arrive at the Combined Sound Pressure Level, it is necessary to logarithmically sum the Reverberant Sound Pressure Level and the Direct Sound Pressure Level. This can be simplified by using Table 13. The combined pressure level can then be entered in line p.

Required Insertion Loss

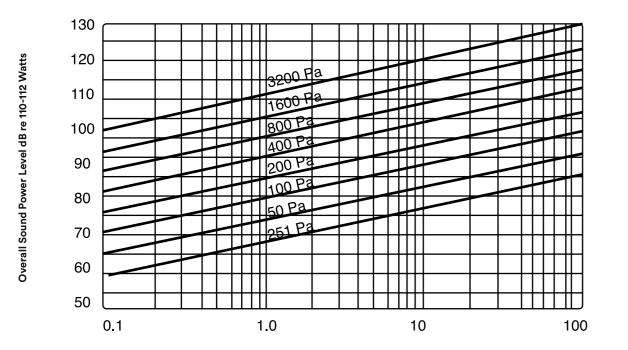
The specification will usually give a design criteria for various area function; where one is not given, Table 14 can be used.

The required or selected criterion is inserted in line a.

If the Combined Sound Pressure Level exceeds the Criterion in any Octave Band, then the difference is the Insertion Loss required from the attenuator (line r).


To allow the possible addition of noise from other sources a safety margin of typically 3dB may be added.

The attenuator can now be selected to meet the parameters of insertion loss, physical size and the pressure loss. The Insertion Loss figures are placed in line s as a final check.


The above analysis method takes no account of regenerated noise from attenuators or ductwork elements.

Similarly, it is not possible to deal with the method of selecting attenuators for high pressure systems which commonly have terminal devices that generate noise and often have some attenuation capability

ROOMSIDE ANALYSIS

Table 1: In-Duct SWL of the Fan

Volume Flow Cubic Metres per Second

Spectrum Correction

		Octave Centre Frequency (f _m in Hz)								
	63	125	200	500	1k	2k	4k	8k		
Forward Curved Centrifugal	-2	-7	-12	-17	-22	-27	-32	-37		
Backward Curved Centrifugal	-7	-8	-7	-12	-17	-22	-27	-32		
Axial	-5	-5	-6	-7	-8	-8	-14	-17		

Table 2: Attenuation of Straight Unlined Rectangular Sheet Metal Ducts - (dB/m)

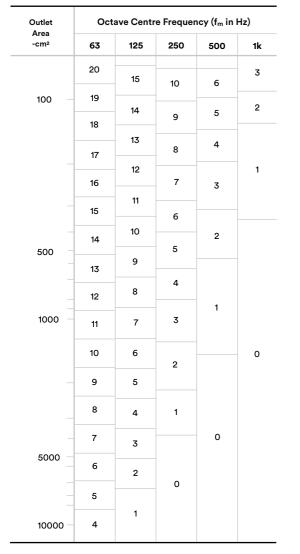
		Min. Duct Dimension									
	,	S (mm)	63	125	250	500	1k	2k	4k	8k	
→ s	←	000 - 200	0.6	0.6	0.45	0.3	0.3	0.3	0.3	0.3	
		201 - 400	0.6	0.6	0.45	0.3	0.2	0.2	0.2	0.2	
		401 - 800	0.6	0.6	0.3	0.15	0.15	0.15	0.15	0.15	
		801 - 1600	0.3	0.15	0.15	0.1	0.06	0.06	0.06	0.06	

Table 3: Attenuation of Straight Unlined Circular or Round Sheet Metal Ducts - (dB/m)

	Min. Duct Dimension S (mm)									
		63	125	250	500	1k	2k	4k	8k	
S-	000 - 180	0.03	0.03	0.05	0.05	0.1	0.1	0.1	0.1	
	181 - 380	0.03	0.03	0.03	0.05	0.07	0.07	0.07	0.07	
	381 - 760	0.02	0.02	0.02	0.03	0.05	0.05	0.05	0.05	
	761 - 1520	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	

Table

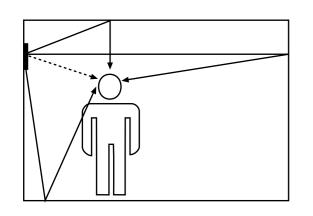
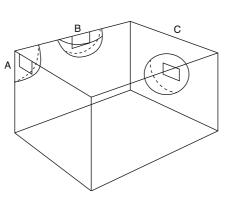
Min. Duct Dimension										
S (mm)	63	125	250	500	1k	2k	4k	8k		
000 - 200	0	0	0	0	6	8	4	3		
201 - 400	0	0	0	6	8	4	3	3		
 401 - 800	0	0	6	8	4	3	3	3		
801-2000	0	6	8	4	3	3	3	3		

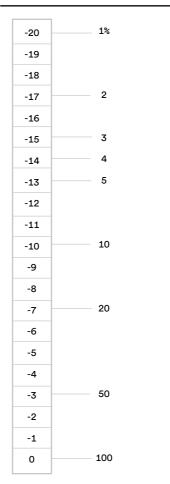

Table 5: Attenuation of Radiussed Bends or Mitred Bends with Long Chord Turning Vanes (Circular or Rectangular Ducts) - dB

No.	Min. Duct Dimension	Octave Centre Frequency (f _m in Hz)									
	S (mm)	63	125	250	500	1k	2k	4k	8k		
LYN,	000 - 250	0	0	о	0	1	2	3	3		
7999	251 - 500	0	0	0	1	2	3	3	3		
→S←	501 - 1000	0	0	1	2	3	3	3	3		
	1001 - 2000	0	1	2	3	3	3	3	3		

ROOMSIDE ANALYSIS

Table 6: Outlet Reflection (dB)

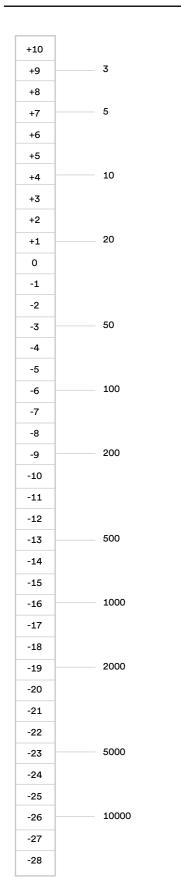

Table 9: Directivity Factor (dB)

Type B	J	unctio		Octave Centre				
		Frequency (Hz)						
10		100		1000 10000				
	+6				+7 +8			63
	+6	+6		+7 +8			125	
+(5		+7		+8		+9	250
+6		+7			+8 +9		9	500
	+7		+	8	+9		1k	
+7			+8		+9			2k
+7		+8	+8		+9			4k
+8					+9			8k

	ype C	Junction of I wo Room Surfaces									Octave Centre			
Outlet Area (cm²)									Frequency (Hz)					
10			100			1000		100	000	0 10	00	000		
		+	3			+4	+	5	4	-6	4	7	63	
		+3			+4	+5	+6	-6 +7 +8		125				
	+3		+4		+5	+6	+7		+	-8		+9	250	
+3	+4	1	+5	+	-6	+7	+	-8			+9		500	
+4	+5	-	+6	+	7	+8				+9			1k	
+5	+6	+	7	+	8	+9					2k			
+	7		+8			+9					4k			
	+8 +9						8k							

Table 7 : Percentage of Total Sound Factors (dB)

Table 8 : Distance Factors (dB)


SILENCERS

ROOMSIDE ANALYSIS

Table 10: Percentage of	Total Sound	Factors (dB)
-------------------------	-------------	--------------

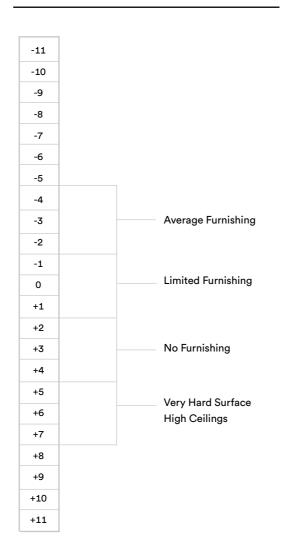

	1
-20	1%
-19	
-18	
-17	2
-16	
-15	3
-14	4
-13	5
-12	
-11	
-10	10
-9	
-8	
-7	20
-6	
-5	
-4	
-3	50
-2	
-1	
0	100
	1

Table 11: Room Volume Factor (dB)

Table 12: Reverbation Time Factors (dB)

Table 13: Addition of Sound Pressure Levels (dB)

Difference in SPLs	Add to larger SPL
0 to 1	+3
2 to 3	+2
4 to 9	+1
10 and above	+0

Situation	NC
Section 1 - Studios and Auditoria	
Sound Broadcasting (drama)	15
Sound Broadcasting (general), TV (general), Recording Studio	20
TV (audience studio)	25
Concert Hall, Theatre	20 - 25
Lecture Theatre, Cinema	25 - 30
Section 2 - Hospitals	
Audiometric Room	20 - 25
Operating Theatre, Single Bed Ward	30 - 35
Multi-bed Ward , Waiting room	35
Corridor, Laboratory	35 - 40
Wash Room, Toilet, Kitchen	35 - 45
Staff Room, Recreation Room	30 - 40
Section 3 - Hotels	
Individual Room, Suite	20 - 30
Ballroom, Banquet Room	30 - 35
Corridor, Lobby	35 - 40
Kitchen, Laundry	40 -45
Section 4 - Restaurants, Shops and Stores	
Restaurant, Department Store (upper floor)	35 - 40
Club, Public House, Cafeteria, Canteen, Retail Store (main floor)	40 - 45
Section 5 - Offices	
Boardroom, Large Conference Room	25 - 30
Small Conference Room, Executive Office, Reception Room	30 - 35
Open Plan Office	35
Drawing Office, Computer Suite	35 - 45
Section 6 - Public Buildings	
Court Room	25 - 30
Assembly Hall	25 - 35
Library, Bank, Museum	30 - 35
Wash Room, Toilet	35 - 45
Swimming Pool, Sports Arena	40 - 50
Garage, Car Park	55
Section 7 - Ecclesiastical and Academic Buildings	
Church, Mosque	25 - 30
Classroom, Lecture Theatre	25 - 35
Laboratory, Workshop	35 - 40
Corridor, Gymnasium	35 - 45
Section 8 - Industrial	
Warehouse, Garage	45 - 50
Workshop (light engineering)	45 - 55
Workshop (heavy engineering)	50 - 65
Section 9 - Private Dwelling (Urban)	
Bedroom	25
Living Room	30

ROOMSIDE ANALYSIS

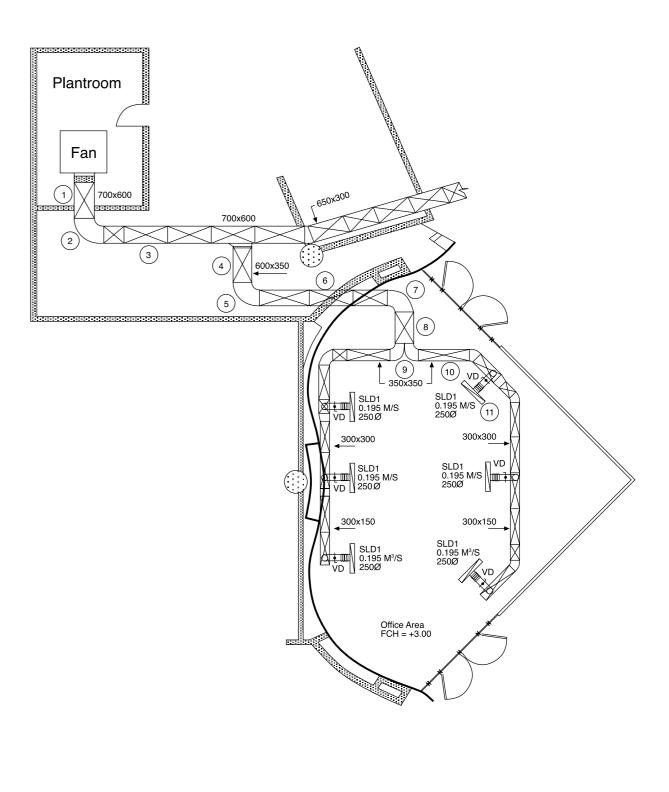


Figure 1 : Duct System For Fan Noise Calculation Example

Calculation Sheet

SAFID Acoust	ics					Room Date:	iside /	Analys	sis Ca	lculat	ions		
Project:						Buildi	na:						
Project:							ment	No:					
Client:						Offer							
Contractor:								_	_	_			
Engineer:							C	Octave	Cent	re Fred	quenc	У	
		Total Ai	r Flow (M ³ /s)			63	125	250	500	1k	2k	4k	8k
		S	ource Sound pov	wer Level									
Smallest Ducts D	imension (mm)		Length (mm)										
Radiussed Elbow	vs Width (mm)		Qty.		- - - -								
Additional A	Attenuation				- - -								
Outlet Reflection	Length (cm)		Width (cm)		-								
SWL Leaving S	System												
Percentage Leaving O	utlet M ³ /s	3			-								
Distance from Outlet	to Listener (m)				-								
Directivity			Centre of Wall or C	ceiling	+								
Direct SPL													
Percentage Leaving O	utlet M ³ /s	;			-								
Room Volume Le	ngth x Width (m²))	Height (m)		-								
Reverbation Time			Seconds		+								
Reverberant S	PL												
Combined SPI	L												
Criterion NC / NR / d			NC			57	48	41	35	31	29	28	27
Add dB Safety Factor	r												
Required Inse	rtion Loss												
Required Insertior	l ossos d¤						C	Jctave	Cent	re Fre	quenc	y I	
Selected Insertion						63	125	250	500	1k	2k	4k	8k
Air Generated Sou		vel											

ROOMSIDE ANALYSIS

Calculation Example

The simple duct system shown in figure 1 will be entered on the calculation sheet to show the steps to be followed to determine whether sound attenuating materials are required to reduce the fan noise in a duct system.

For the duct system described in Figure 1, the sound power level produced by the fan is known from manufacturer's data. Calculate the sound pressure level in office area, at the nearest occupied position to a supply ceiling slot linear diffuser, which is given to be 1.5 meters from the diffuser and directly in line with its axis, and the diffusers are located in the ceiling.

Fan Details

Type : Centrifugal **Duty :** 2.26 m3/s at 600 Pa. Sound Power Level at mid frequency Octave Bands

Hz	63	125	250	500	1k	2k	4k	8k
dB	86	91	87	92	88	88	82	74

Room Details

Room Value : 300 m³ Room Height : 3m Outlet : : Slot diffuser with 30mm neck width, 1200mm long. Slot diffuser handles 0.195 m³/s.

Room Criterion

NC 35 at 1.5 metres from the noise outlet. Office area

Roomside Calculation

System Element

Ref	Туре	W	Н	Length / Type			
1	Duct	700	600	2 meters			
2	Bend	700	600	Radiused			
3	Duct	700	600	5 meters			
4	Duct	600	350	2 meters			
5	Bend	600	350	Radiused			
6	Duct	600	350	6 meters			
7	Bend	600	350	Radiused			
8	Duct	600	350	2 meters			
9	Bend	350	350	Radiused			
10	Duct	350	350	2 meters			
11	Outlet	2 slot diffuser, 30 mm neck width 1200 mm long					

.....

SAFID

Calculation Example

SAFID Acoustics

Project:

Client:

Contractor:

Engineer:

Total Air Flow (M³/s) 2.26

Source Sound power Level

		600		7
		350		12
Smallest Ducts D	imension (mm)		Length (mm)	
		700		1
		600		2
Radiussed Elbow	rs Width (mm)	350	Qty.	1
Additional A	ttenuation			
Outlet Reflection	Length (cm)	120	Width (cm)	3

SWL Leaving System {a-(b+c)}

Percentage Leaving Outlet	M³/s	0.195	9%
Distance from Outlet to Listener	(m)	1.5	
Directivity	Centre of Wall or Ceiling		

Direct SPL {e-(f+g)+h}

Percentage Leavi	M³/s	1.17		52%		
Room Volume Length x Widt		th (m²)	100	Hei	ght (m)	3
Reverbation Time	9	1 Se	econd			

Reverberant SPL {e-(k+l)+m}

Combined SPL (logarithmic addition of i an o)

Criterion NC / NR / dBA	NC 35	
Add dB Safety Factor	3	

Required Insertion Loss

Sound Attenuator Selection

SA / O / 20 - 150 O / 900L x 700W x 600H Required Insertion Losses dB Selected Insertion Losses dB Attenuator Air Flow 2.26 M3/s Attenuator Pressure drop 47 Pa

ROOMSIDE ANALYSIS

Roomside Analysis Calculations

Date: Building: Equipment No: Offer No:

			C	ctave	Cent	re Fre	queno	;y		
26		63	125	250	500	1k	2k	4k	8k	
Level		86	91	87	92	88	88	82	74	a
7	- [4.2	4.2	2.1	1.05	1.05	1.05	1.05	1.05	
12	-	7.2	7.2	5.4	3.6	2.4	2.4	2.4	2.4	b
										b
	-									
] -									
1	-			1	2	3	3	3	3	
2	-			2	4	6	6	6	6	b
1	-				1	2	3	3	3	b
	-									
	- 									
	-									b
	-									
-	- r	45	40		•					c
3		15	10	6	2					
		60	70	71	78	74	73	67	59	e
] -	10	10	10	10	10	10	10	10	f
	-	15	15	15	15	15	15	15	15	g
ng	+	3	4	5	6	7	8	8	8	h
		38	49	51	59	56	56	50	42	i
	- 1		_					_	_	k
3	-	3 -11	1							
0	+			-11	-11	-11	-11			m
	_	46	56	57	64	60	59	53	45	0
		47	57	58	65	61	61	55	47	p
	7									"
		60	52	45	40	36	34	33	32	q
		3	3	3	3	3	3	3	3	
			8	16	28	28	30	25	18	r
			•	-	•	-				1

	Octave Centre Frequency												
63	125	250	500	1k	2k	4k	8k						
	8	16	28	28	30	25	18						
8	14	20	37	47	32	26	24						

INTRODUCTION TO SILENCERS

General

SAFID attenuators were developed in response to various requirements from consulting engineers, owners and contractors. They provide the most economical choice for solving the wide range of noise control issues encountered in the HVAC field.

Our standard range of attenuators should cover most of the common problems in the HVAC industry, but if none of our standard silencers meet your requirements then we will develop one for your need.

Material

All SAFID attenuator are constructed of galvanized steel sheets as per ASTM A924 and ASTM A653 (replacing ASTM A525/A527).

Attenuators are also available in the following materials:

• Stainless steel as per ASTM 240 type 304 or 316.

• Epoxy coated (internally and externally).

Surface Finish

All SAFID galvanized attenuator are produced with G90 surface coating or 275g/m² zinc coating, regular spangle finish.

• All stainless steel attenuator are made with 2B mill finish

• All epoxy coated attenuators are to be made to client requirements in terms of color and coating thickness.

Acoustic Infill

All SAFID "Acoustic Infill" material is inert, nonflammable, non-hygroscopic, will not sustain vermin or fungus, rot proof and odorless. The "Acoustic Infill" shall be faced with glass tissue or equivalent. The infill material is guaranteed against erosion up to air velocities of 30 m/s and temperatures up to 121°C.

The acoustic infill tested to the following tests: • Surface Burinng Characteristics: UL 723, ASTM E84, ASTM E136

- Mold Growth: ASTM D2020, UL 181
- Moisture Absorption: ASTM D-07 B, ASTM C550
- Fire Resistance: NFPA 90A
- Acoustic Performance: ASTM C1071, ASTM C423-77

SAFID

Test Method

All SAFID attenuators are tested in accordance with BS 4718: 1971. "Methods of Test for silencers for Air Distribution Systems". These tests were carried out by the Sound Research Laboratories Limited in Sudbury, Suffolk, U.K.

The SRL Labs are equipped with the most up-to-date instruction and computer systems and able to conduct all acoustic and aerodynamic tests across the octave band frequency range 63Hz to 8KHz.

The laboratory measurement of insertion loss is defined as the arithmetic difference in the sound level of an electronically generated noise produced upstream of the test sample location with and without the test sample installed, when measured downstream of the test sample location.

The test ducting is assembled such that one end is located into a plenum containing the sound source and the outlet is fed into the 300 cubic metres reverberation room.

The static insertion loss is measured by placing a speaker in the duct and then measuring the noise levels in the test chamber with and without the attenuator. The difference between the measurements is calculated to give the insertion loss.

For the regenerated noise, measurements are made of the noise generated by air flowing through the duct system alone. Part of the duct work is then replaced by attenuator and the noise is measured again. The noise due to this system is then deducted from the noise measured with the attenuator to give the regenerated noise due solely to the attenuator.

From the above carried tests the insertion losses measurements have been recorded and derived and are presented in the tabular form in Table 17 of this section.

Description

The straight rectangular cased attenuator is mainly used to reduce fan and machine noise to meet the required or allowed noise levels. The SA attenuator offer many advanced features including as a standard aerodynamic splitters, side liners, slide on flange and protect acoustic infill by galvanized perforated sheet metal.

Construction

Type SA attenuator casings and splitters are manufactured from galvanized sheet metal Ga.20 minimum. Casing are formed with lock formed seams with a mastic sealant; the construction complies with SMACNA and DW 144 Standards. SAF - 30 slide on flanges are fitted as standard.

The splitters contain acoustic infill which complies with Class O Building Regulations. The infill has a glass tissue facing and is contained behind galvanized perforated metal; this dual protection prevents damage and fibre erosion up to 30 m/s airway velocity. The splitters are radiussed at both ends to minimize air pressure loss and regenerated noise.

Alternative Construction

SAHP

Type SAHP; as for type SA but with the casing thickness increased to Ga.18 to comply with ductwork codes SMACNA stds. high pressure & DW 144 Class C or D.

SAM

Type SAM; as for type SA but the acoustic infill is enveloped in a Melinex polyester film.

SAH

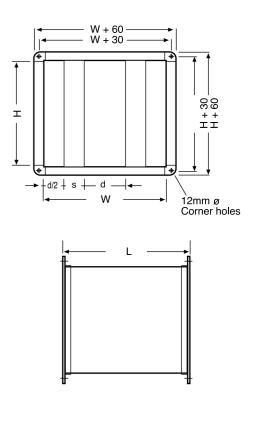
Type SAH; as for type SA but with horizontal splitters, normally to a maximum width dimension of 1200mm.

SAAF

Type SAAF; as for type SA but with rolled steel angle end flanges drilled to a standard pattern.

RECTANGULAR SOUND ATTENUATOR

SA


Sectionalised Construction

SA attenuators are normally supplied in sections when any of the following dimensions are exceeded: W=2100mm, H=1800mm, L=2100mm.

The assembly of sectionalised attenuators is on site, by others. SAFID will provide full details of attenuator configuration and assembly.

Dimensions

Attenuator: Type SA

S SILENCER

BEND ATTENUATOR

SABV

Description

The vertical-mounted cased bend rectangular attenuator is mainly used to reduce fan and machine noise to meet the required or allowed noise levels. The SA attenuator offer many advanced features including as a standard aerodynamic splitters, side liners, slide on flange and protect acoustic infill by galvanized perforated sheet metal.

Construction

The construction of cased bend attenuators is generally as for the straight version. To minimize resistance to airflow, turning vanes are incorporated into the design.

Dimension L1 and L2 refer to the air entry and discharge legs respectively, measured along the center path of the bend until the intersection point so that Li + L2 will be equal to L. Unless requested otherwise, bend attenuators would be supplied with L1 equal to L2.

Alternative Construction

SABVP

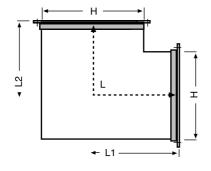
Type SABVP; as for type SABV but with the casing thickness increased to Ga.18 to comply with ductwork codes SMACNA stds. high pressure & DW 144 Class C or D.

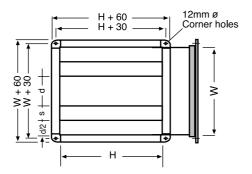
SABVM

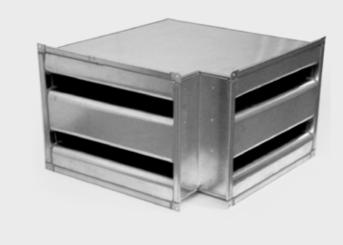
Type SAM; as for type SA but the acoustic infill is enveloped in a Melinex polyester film.

SABVF

Type SABVF; as for type SABV but with rolled steel angle end flanges drilled to a standard pattern.


Sectionalised Construction


SABV attenuators are normally supplied in sections when any of the following dimensions are exceeded: W=2100mm, H=1800mm, L=2100mm


The assembly of sectionalised attenuators is on site, by others. SAFID will provide full details of attenuator configuration and assembly.

Dimensions

Vertical Bend Attenuator: Type SABV

Description

The horizontal-mounted cased bend rectangular attenuator is mainly used to reduce fan and machine noise to meet the required or allowed noise levels. The SA attenuator offer many advanced features including as a standard aerodynamic splitters, side liners, slide on flange and protect acoustic infill by galvanized perforated sheet metal.

Construction

The construction of cased bend attenuators is generally as for the straight version. To minimize resistance to airflow, turning vanes are incorporated into the design.

Dimension L1 and L2 refer to the air entry and discharge legs respectively, measured along the center path of the bend until the intersection point so that Li + L2 will be equal to L. Unless requested otherwise, bend attenuators would be supplied with L1 equal to L2.

Alternative Construction

SABHP

Type SABHP; as for type SABH but with the casing thickness increased to Ga.18 to comply with ductwork codes SMACNA stds. high pressure & DW 144 Class C or D.

SABHM

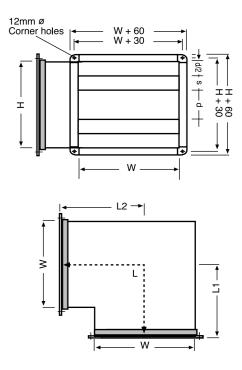
Type SABHM; as for type SABH but the acoustic infill is enveloped in a Melinex polyester film.

SABHF

Type SABHF; as for type SABH but with rolled steel angle end flanges drilled to a standard pattern.

BEND ATTENUATOR

SABH


Sectionalised Construction

SABH attenuators are normally supplied in sections when any of the following dimensions are exceeded: W=2100mm, H=1800mm, L=2100mm

The assembly of sectionalised attenuators is on site, by others. SAFID will provide full details of attenuator configuration and assembly.

Dimensions

Horizontal Mounting Bend Attenuator: Type SABH

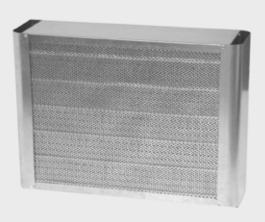

SPLLITER

Table 1: Recommended design Criteria for Various Area Function Situation Section 1 - Studios and Auditoria Sound Broadcasting (drama) Sound Broadcasting (general), TV (general), Recording Studio TV (audience studio) Concert Hall, Theatre Lecture Theatre, Cinema Section 2 - Hospitals Audiometric Room Operating Theatre, Single Bed Ward Multi-bed Ward, Waiting room Corridor, Laboratory Wash Room, Toilet, Kitchen Staff Room, Recreation Room Section 3 - Hotels Individual Room, Suite Ballroom, Banquet Room Corridor, Lobby Kitchen, Laundry Section 4 - Restaurants, Shops and Stores Restaurant, Department Store (upper floor) Club, Public House, Cafeteria, Canteen, Retail Store (main floor) Section 5 - Offices Boardroom, Large Conference Room Small Conference Room, Executive Office, Reception Room Open Plan Office Drawing Office, Computer Suite Section 6 - Public Buildings Court Room Assembly Hall Library, Bank, Museum Wash Room, Toilet Swimming Pool, Sports Arena Garage, Car Park Section 7 - Ecclesiastical and Academic Buildings Church, Mosque Classroom, Lecture Theatre Laboratory, Workshop Corridor, Gymnasium Section 8 - Industrial Warehouse, Garage Workshop (light engineering) Workshop (heavy engineering) Section 9 - Private Dwelling (Urban) Bedroom

SAS

Dimensions

Splitter Type SAS

т

Bullnose Ends

▲

σ

d/2 + s + d - ↓ ←

w

Description

The splitter or baffle are usually filled with acoustic infill, made to fit into builders work, ducts and shafts. It is designed for reducing fan noise, meeting specified Noise levels such as NC or NR.

Construction

Type SAS

Where preferred, Type SAS splitters only can be supplied for inclusion in an AHU section or builders work duct. Where required, airway spacer channels can be supplied.

The splitters contain acoustic infill which complies with Class O Building Regulations. The infill has a glass tissue facing and is contained behind perforated metal; this dual protection prevents damage and fibre erosion up to 30 m/s airway velocity. The splitters are radiussed at both ends to minimize air pressure loss and regenarated noise.

A combination of acoustic splitter and airway produces an attenuator 'module'. The first 'module' comprises two half width side liners plus an airway.

Alternative Construction

SASM

Type SASM; as for type SAS but the acoustic infill is enveloped in a melinex polyester film.

Living Room

DESIGN CRITERIA

ons	
	NC
	15
	20
	25
	20 - 25
	25 - 30
	20 - 25
	30 - 35
	35 - 40
	35 - 45
	30 - 40
	20 - 30
	30 - 35
	35 - 40
	40 -45
	35 - 40
	40 - 45
	25 - 30
	30 - 35
	35
	35 - 45
	25 - 30
	25 - 35
	30 - 35
	35 - 45
	40 - 45 55
	25 - 30
	25 - 35
	35 - 40
	35 - 45
	45 - 50
	45 - 55
	50 - 65
	25
	30
	<u> </u>

ATTENUATOR PERFORMANCE

SA attenuator have been rated, tested and derived from tests meeting the requirements of BS 4718: 1971 as tests conducted by SRL of UK.

No deviations of insertion loss with airflow were recorded over the range of velocities employed in this catalogue. Static insertion loss figures are provided in Table 3. Full regenerated noise data is available for SA attenuators to enable installed insertion loss to be calculated. Table 2 gives guidelines for maximum face velocity against design noise level requirements, in order to limit attenuator regenerated noise.

Pressure loss data assumes that the airflow to the attenuator is uniform over the face, in a duct-to-duct layout. Units installed in situations leading to poor inlet or discharge conditions could incur pressure losses higher than catalogued.

In most applications the requirement to keep the pressure drop across the attenuator to a reasonable level automatically ensures that the flow noise generated within the attenuator is insignificant compared with the permissible sound power which emerges. If however, extremely low levels have to be obtained, or if the sound power from the fan is relatively low, the flow noise generated by the attenuator can be significant and can reduce its effective insertion loss. It is for this reason that when an acoustic consultant specifies the attenuator performance he will normally specify the insertion loss which is required. This then enables the attenuator manufacturer to select a unit of such a size that the flow generated within it will not reduce the effective insertion loss below the required level.

Assuming correct installation, acoustic and aerodynamic performance of splitters only will be as for a cased attenuator.

Description

Space noise levels can be affected by attenuator self noise. As a guide it is recommended that the face velocities indicated are not exceeded. For systems with fewer than three outlets or less than 5m of ductwork, size for 5NC lower. For design levels of NC30 or below the selection should be checked by SAFID.

Face Velocity (v_t m/s)

Attenuator Type

SA 20 - 75 SA 20 - 100 SA 20 - 150 SA 20 - 200

3.9

5.5

6.7

7.7

8.6

9.7

5.0

6.2

7.4

8.9

10.4

11.6

3.2

4.2

5.0

5.7

6.6

7.6

Table 2: Installed Insertion Loss (Velocity)

2.4

3.2

3.8

4.6

5.4

6.2

Required

Space Noise

Level

(NC)

25

30

35

40

45

50

Table 3: Static Insertion Loss (dB)

SA 20 Attenu				Oc	tave Centre Fr	equency (f _m in	Hz)						
Туре	Length (mm)	63	125	250	500	1k	2k	4k	8k				
SA 20 - 75	600	9	13	22	36	45	39	33	29				
SA 20 - 75	900	10	16	27	41	49	47	38	33				
SA 20 - 75	1200	11	18	31	46	50	50	43	38				
SA 20 - 75	1500	12	21	36	50	50	50	48	42				
SA 20 - 75	1800	13	24	41	50	50	50	50	46				
SA 20 - 75	2100	14	26	45	50	50	50	50	50				
SA 20 - 75	2400	15	29	50	50	50	50	50	50				
SA 20 - Attenu		Octave Centre Frequency (f _m in Hz)											
Туре	Length (mm)	63	125	250	500	1k	2k	4k	8k				
SA 20 - 100	600	7	10	18	34	46	40	33	29				
SA 20 - 100	900	8	12	22	37	50	46	36	31				
SA 20 - 100	1200	9	14	26	40	50	50	39	33				
SA 20 - 100	1500	9	17	30	44	50	50	41	35				
SA 20 - 100	1800	10	19	34	47	50	50	44	37				
SA 20 - 100	2100	11	21	38	50	50	50	47	39				
SA 20 - 100	2400	11	24	42	50	50	50	49	41				
SA 20 - 150 Attenuators			Octave Centre Frequency (f _m in Hz)										
Туре	Length (mm)	63	125	250	500	1k	2k	4k	81				
SA 20 - 150	600	8	12	17	34	44	28	23	22				
SA 20 - 150	900	8	14	20	37	47	32	26	24				
SA 20 - 150	1200	9	15	23	40	50	36	29	26				
SA 20 - 150	1500	10	17	26	43	53	40	32	28				
SA 20 - 150	1800	11	18	29	46	57	44	35	31				
SA 20 - 150	2100	11	20	32	49	40	48	38	33				
SA 20 - 150	2400	12	21	35	50	50	50	41	35				
SA 20 - Attenu		Octave Centre Frequency (f _m in Hz)											
Туре	Length (mm)	63	125	250	500	1k	2k	4k	8				
SA 20 - 200	600	7	11	16	25	27	23	21	20				
SA 20 - 200	900	8	12	18	30	33	26	23	21				
		8	14	21	35	39	30	25	23				
SA 20 - 200	1200					44	33	28					
SA 20 - 200 SA 20 - 200 SA 20 - 200 SA 20 - 200	1200 1500	9	15	23	40	44	00	20	24				
SA 20 - 200 SA 20 - 200			15 17	23 26	40	50	37	30	24 26				
SA 20 - 200 SA 20 - 200 SA 20 - 200	1500	9											

ATTENUATOR PERFORMANCE

ATTENUATOR SELECTION

Quick Selection

The SAFID leaflet titled "Sound and Noise Control" and other technical sources, describe the method for full acoustic analysis. If attenuator performance requirements have been established in this way, then reference should be made to Table 3.

However, to enable engineers to produce attenuator selections to assist in design planning, Table 4 has been devised. It is recommended that SAFID engineers check the attenuators selections, when detailed system data is available.

Requirements for noise levels of NC30 or below should be referred to SAFID for analysis.

Larger and alternative cross section can be selected from Tables 5 to 8. Note that the width dimension (Type SA) or height dimension (Type SAH) must be in a 'modular' increment. Air pressure loss can be taken from the tables for the appropriate face velocity.

For Atmosphere side noise assessment consult SAFID.

Rooms with average fur-

nishing: floors carpeted,

including:

Offices, Banks,

Libraries, Lecture rooms,

Restaurants Hotel rooms,

Department stores.

250 Pa 500 Pa 1000 Pa

Attenuator Length (mm)

900

1200

900

1500

1200

1800

900

900

900

1200

1200

1500

900

1200

1200

1800

1500

2100

900

1200

1200

1500

1500

1800

Table 4: Attenuator Quick Selection Chart

Method of Selection

- 1 From Table 1 select the recommended space NC level for the type of area concerned.
- 2 From Table 4 select an attenuator for appropriate fan static pressure, type of ventilated space and space NC level.
- 3 From Table 2 check for maximum attenuator face velocity permissible for space NC level required.
- 4 From Table 5 to 8 as applicable, select a cross section for the attenuator for the volume frlo rate required and to satisfy the maximum desirable face velocity / pressure loss.
- 5 Selection example: SA20-150 / 700W x 600H x 1500L

Rooms without soft fur-

nishings, including:

Kitchens, Swimming

Pools, Sports Halls,

Covered garages,

Warehouses.

250 Pa 500 Pa 1000 Pa

Attenuator Length (mm)

900

900

1500

2100

1800

2100

1500

2100

1500

2100

1800

2400

900

1500

1200

1800

1500

1800

High velocity CV/

VAV systems

incorporating terminal units and

utilizing DW 142

Class C ductwork.

2000 Pa Max

Attenuator Length (mm)

1200

1800

1500

2100

1800

2400

سافىد SAFID

FULL METHOD

46

Fan Static Pressure

Criterion Type

SA20-150

Type of ventilated area being served by low velocity systems utilizing DW 142 Classes A or B ductwork

Rooms with limited

furnishings: mainly hard

surfaces, including:

Hospital areas,

Supermarkets, Computer

rooms, Clean rooms,

Laboratories, Cafes,

Dance Halls, Museums,

Canteens, Toilets,

250 Pa 500 Pa 1000 Pa

Attenuator Length (mm)

900

1500

1200

1800

1500

2100

1200

1800

1500

2100

1800

1400

Full Selection

When an attenuator performance requirement has been established, for example, after following the procedure in the Safid "Sound & Noise Control" brochure, a suitable SA attenuator can be selected from the following Method of Selection. If the acoustic performance is not known, then a selection can be obtained using the Quick Slection Method on page 46.

Larger and alternative cross sections can be selected from Tables 5 to 8. Note that the width dimension (Type SA) or height dimension (Type SAH) must be in a 'modular' increment. Air pressure loss can be taken from the tables for the appropriate face velocity.

Method of Selection

- 1 From Table 3 select an attenuator to meet the performance needs.
- 2 From Table 2 check for maximum attenuator face velocity permissible for space NC level required.
- 3 From Table 5 to 8 as applicable, select an attenuator cross-section for the required volume flow rate and to satisfy the maximum desirable face velocity / pressure loss.
- ▲ Selection example: SA20-100 / 600W x 600H x 1200L

NOTE

The data below should not be used where Melinex (polyester membrane) faced attenuators are rquired, since the use of the membrane modifies acoustic performance.

Performance requirements higher than shown in Table 3 should be referred to SAFID for selection.

ATTENUATOR PERFORMANCE | TYPE SA 20 - 75

PERFORMANCE I TYPE SA 20 - 100

	ire Loss - Cross	Section Si	zing	
Pressure Loss (2	Ap, Pa)	15	25	35
Face Velocity (v	, m/s)	2.1	2.7	3.2
Attenuator Se Against Face V				NC 2
Width (mm)	Height (mm)			
300	150	95	120	145
	300	190	240	290
ONE	450	280	360	430
MODULE	600	380	490	580
	750	470	610	720
	900	570	730	860
600	300	380	490	580
	450	570	730	860
тwo	600	760	970	1150
MODULES	750	950	1200	1440
	900	1130	1460	1730
	1050	1320	1700	2020
900	1200	1510	1940	2300
	450	850	1090	1300
THREE	600	1130	1460	1730
MODULES	750	1420	1820	2160
	900	1700	2190	2590
	1050	1990	2550	3020
1200	1200	2270	2920	3460
	1350	2550	3280	3890
FOUR	600	1510	1940	2300
MODULES	750	1890	2430	2880
	900	2270	2920	3460
	1050	2650	3400	4030
1500	1200	3020	3890	4610
	1350	3400	4370	5180
	1500	3780	4860	5760
	750	2360	3040	3600
	900	2840	3650	4320
FIVE	1050	3310	4250	5040
MODULES	1200	3780	4860	5760
	1350	4250	5470	6480
	1500	4730	6080	7200
	1650	5200	6680	7920
	1800	5670	7290	8640
1800	900	3400	4370	5180
	1050	3970	5100	6050
SIX	1200	4540	5830	6910
MODULES	1350	5100	6560	7780
	1500	5670	7290	8640
	1650	6240	8020	9500
	1800	6800	8750	10370
	1950	7370	9480	11230
2100	1050	4630	5950	7060
	1200	5290	6800	8060
SEVEN	1350	5950	7650	9070
MODULES	1500	6620	8510	10080
	1650	7280	9360	11090
	1800	7940	10210	12100
	1950	8600	11060	13100
	2100	9260	11910	14110
	2250	9920	12760	15120
2400	1200	6050	7780	9220
	1350	6800	8750	10370
EIGHT	1500	7560	9720	11520
MODULES	1650	8320	10690	12670
	1800	9070	11670	13820
	1950	9830	12640	14980
	2100	10580	13610	16130
	2250	11340	14580	17280

Length 'L' (mm) 900 1200 1500 600 ∆ p Factor x0.90 x0.95 0 x1.05

For splitter bend attenuators add 40% to the pressure loss for the straight attenuator.

Table 5:	Pressure	Loss - C	Cross	Section	Sizing

Pressure Loss (∆		15	25	35	50	60	75	85	100	110	125
Face Velocity (v _t	, m/s)	1.6	2.1	2.4	2.9	3.2	3.5	3.8	4.0	4.3	4.6
Attenuator Sel Against Face V				NC 25		NC 30		NC 35			NC 40
Width (mm)	Height (mm)				,	Volume Flov	w Rate (V I/	(s)			
275	150	65	85	100	120	130	145	155	165	175	190
	300	130	170	200	240	260	290	310	330	350	380
ONE	450	200	260	300	360	400	430	470	500	530	570
MODULE	600	260	350	400	480	530	580	630	660	710	760
	750	330	430	500	600	660	720	780	830	890	950
	900	400	520	590	720	790	870	940	990	1060	1140
550	300	260	350	400	480	530	580	630	660	710	760
	450	400	520	590	720	790	870	940	990	1060	1140
TWO	600	530	690	790	960	1060	1160	1250	1320	1420	1520
MODULES	750	660	870	990	1200	1320	1440	1570	1650	1770	1900
	900 1050	790 920	1040 1210	1190 1390	1440 1670	1580 1850	1730 2020	1880 2190	1980 2310	2130 2480	2280 2660
825	450	590	780	890	1070	1850	1300	1410	1490	1600	1710
025	600	790	1040	1190	1440	1580	1730	1880	1980	2130	2280
THREE	750	990	1300	1490	1790	1980	2170	2350	2480	2660	2850
MODULES	900	1190	1560	1780	2150	2380	2600	2820	2970	3190	3420
	1050	1390	1820	2080	2510	2770	3030	3290	3470	3720	3980
	1200	1580	2080	2380	2870	3170	3470	3760	3960	4260	4550
1100	600	1060	1390	1580	1910	2110	2310	2510	2640	2840	3040
	750	1320	1730	1980	2390	2640	2890	3140	3300	3550	3800
FOUR	900	1580	2080	2380	2870	3170	3470	3760	3960	4260	4550
MODULES	1050	1850	2430	2770	3350	3700	4040	4390	4620	4970	5310
	1200	2110	2770	3170	3830	4220	4620	5020	5280	5680	6070
	1350	2380	3120	3560	4310	4750	5200	5640	5940	6390	6830
1375	750	1650	2170	2480	2990	3300	3610	3920	4130	4430	4740
	900	1980	2600	2970	3590	3960	4330	4700	4950	5320	5690
FIVE	1050	2310	3030	3460	4190	4620	5050	5490	5780	6210	6640
MODULES	1200	2640	3470	3960	4790	5280	5780	6270	6600	7100	7590
	1350	2970	3900	4460	5380	5940	6500	7050	7430	7980	8540
	1500	3300	4330	4950	5980	6600	7220	7840	8250	8870	9490
1650	900	2380	3120	3560	4310	4750	5200	5640	5940	6390	6830
six	1050 1200	2770 3170	3640 4160	4160 4750	5020 5740	5540 6340	6060 6930	6590 7520	6930 7920	7450 8510	7970 9110
MODULES	1350	3560	4160	5350	6460	7130	7800	8460	8910	9580	10250
WODULES	1500	3960	5200	5350	7180	7130	8660	9400	9900	10640	10250
	1650	4360	5720	6530	7900	8710	9530	10350	10890	11710	12520
	1800	4750	6240	7130	8610	9500	10400	11290	11880	12770	13660
1925	1050	3230	4240	4850	5860	6470	7070	760	8090	8690	9300
	1200	3700	4850	5540	6700	7390	8090	8780	9240	9930	10630
SEVEN	1350	4160	5460	6240	7540	8320	9100	9880	10400	11170	11950
MODULES	1500	4620	6060	6930	8370	9240	10110	10970	11550	12420	13280
	1650	5080	6670	7620	9210	10160	11120	12070	12700	13660	14610
	1800	5540	7280	8320	10050	11090	12130	13170	13860	14900	15940
	1950	6010	7880	9010	10890	12010	13140	14260	15020	16140	17270
	2100	6470	8490	9700	11720	12940	14150	15360	16170	17380	18600
2200	1200	4220	5540	6340	7660	8450	9240	10030	10560	11350	12140
	1350	4750	6240	7130	8610	9500	10400	11290	11880	12770	13660
EIGHT	1500	5280	6930	7920	9570	10560	11550	12540	13200	14190	15180
MODULES	1650	5810	7620	8710	10530	11620	12710	13790	14520	15610	16700
	1800	6340	8320	950	11480	12670	13860	15050	15840	17030	18220
	1950	6860	9010	10300	12440	13730	15020	16300	17160	18450	19730
	2100	7390	9700	11090	13500	14780	16170	17560	18480	19870	21250
0475	2250	7920	10400		14360	15840	17330	18810	19800	21290	22770
2475	1350 1500	5350	7020 7800	8020	9690	10690 11880	11960	12700	13370	14370 15960	15370 17080
NINE	1650	5940 6530	8580	8910 9800	10770 11840	13070	12990 14290	14110 15520	14850 16330	17560	17080
MODULES	1800	7130	9360	10690	12920	14260	15590	16930	17820	19160	20490
	1950	7720	10140		14000	15440	16890	18340	19300	20750	20490
	2100	8320	10140		15070	16630	18190	19750	20790	22350	23910
	2250	8910	11690		16150	17820	19490	21160	22280	23950	25620
	2400	9500	12470		17230	19010	20790	22570	23760	25540	27320
1		1									
he pressure los	s data above rela	ates to a str	aight att	enuator 120	0mm long.	The follow	ing factors	are applic	cable to ot	her lengths	:
he pressure los Length 'L' (mm)			aight att	enuator 120 1200	0mm long . 1500	The follow 1800	ing factors		cable to ot	her lengths	::

For splitter bend attenuators add 35% to the pressure loss for the straight attenuator.

48

50	60	75	85	100	110	125
3.8	4.2	4.7	5.0	5.4	5.7	6.0
	NC 30		NC 35			NC 40
١	/olume Flov	w Rate (V I/	s)			
170	190	210	225	245	255	270
340	380	420	450	490	510	540
510	570	630 850	680	730	770	810
680 860	760 950	1060	900 1130	970 1220	1030 1280	1080 1350
1030	1130	1270	1350	1460	1540	1620
680	760	850	900	970	1030	1080
1030	1130	1270	1350	1460	1540	1620
1370 1710	1510 1890	1690 2120	1800 2250	1940 2430	2050 2570	2160 2700
2050	2270	2540	2700	2920	3080	3240
2390	2650	2960	3150	3400	3590	3780
2740	3020	3380	3600	3830	4100	4320
1540 2050	1700 2270	1900 2540	2030 2700	2190 2920	2310 3080	2430 3240
2570	2840	3170	3380	3650	3850	4050
3080	3400	3810	4050	4370	4620	4860
3590	3970	4440	4730	5100	5390	5670
4100	4540	5080	5400	5830	6160 6070	6480
4620 2740	5100 3020	5710 3380	6080 3600	6560 3830	6930 4100	7290 4320
3420	3780	4230	4500	4860	5130	5400
4100	4540	5080	5400	5830	6160	6480
4790	5290	5920	6300	6800	7180	7560
5470 6160	6050 6800	6790 7610	7200 8100	7780 8750	8210 9230	8640 9720
6840	7560	8560	900	9720	10260	10800
4280	4730	5290	5630	6080	6410	6750
5130	5670	6350	6750	7290	7700	8100
5990	6620	7400	7880	8510	8980	9450
6840 7700	7560 8510	8460 9520	9000 10130	9720 10940	10260 11540	10800 12150
8550	9450	10580	11250	12150	12830	13500
9410	10400	11630	12380	13370	14110	14850
10260	11340	12690	13500	14580	15390	16200
6160 7180	6800 7940	7610 8880	8100 9450	8750 10210	9230 10770	9720 11340
8210	9070	10150	10800	11660	12310	12960
9230	10210	11420	12150	13120	13850	14580
10260	11340	12690	13500	14580	15390	16200
11290 12310	12470 13610	13960 15230	14850 16200	16040 17500	16930 18740	17820 19440
13340	14740	16500	17550	18950	20010	21060
8380	9260	10360	11030	11910	12570	13230
9580	10580	11840	12600	13610	14360	15120
10770 11970	11910 13230	12320 14810	14180 15750	15310 17010	16160 17960	17010 18900
13170	13230	16290	17330	18710	19750	20790
14360	15880	17770	18900	20410	21550	22680
15560	17200	19250	20480	22110	23340	24570
16760 17960	18520 19850	20730	22050	23810 25520	25140	26460 28350
17960 10940	19850	22210 13540	23630 1440	15550	26930 16440	28350 17280
12310	13610	15230	16200	17500	18470	19440
13680	15120	16920	18000	19440	20520	21600
15050	16630	18610	19800	21380	22570	23760
16420 17780	18140 19660	20300 22000	21600 23400	23330 25270	24620 26680	25920 28080
19150	21170	22000	25200	25270	28680	30240
20520	22680	25380	27000	29160	30780	32400
21890	24190	27070	28800	31100	32830	34560

00mm long. The following factors are applicable to other lengths:

1800	2100	2400
x1.10	x1.15	x1.20

ATTENUATOR PERFORMANCE | TYPE SA 20 - 150

3.9

NC 25

4.6

5.5

NC 30

6.0

6.7

NC 35

Volume Flow Rate (V I/s)

7.1

7.7

NC 40

3.0

Table 7: Pressure Loss - Cross Section Sizing

Height (mm)

Pressure Loss (Δp , Pa)

Face Velocity (v, m/s)

Width (mm)

ONE

тwo

THREE

FOUR

FIVE

six

SEVEN

MODULES

MODULES

MODULES

MODULES

MODULES

MODULES

MODULE

Attenuator Self Noise guide Against Face Velocity (v,)

8.1

8.6

NC45

سافىد SAFID

ATTENUATOR PEROFRMANCE - TYPE SA 20 - 200

able 8: Pressure Loss - Cross Section Sizing	
--	--

Pressure Loss (∆p, Pa)	15	25	35	50	60	75	85	100	110	125	
Face Velocity (v	v, m/s)	4.0	5.0	6.2	7.4	8.0	8.9	9.6	10.4	11.0	11.6	
Attenuator Se Against Face	elf Noise guide Velocity (v _t)		NC 25	NC 30	NC 35	NC 40		1	NC45		NC50	
Width (mm)	Height (mm)				v	olume Flo	w Rate (V I/	's)				
400	150	240	300	370	445	480	535	575	625	660	695	
	300	480	600	740	890	960	1070	1150	1250	1320	1390	
ONE	450	720	900	1120	1330	1440	1600	1730	1870	1980	2090	
MODULE	600	960	1200	1490	1780	1920	2140	2300	2500	2640	2780	
	750	1200	1500	1860	2220	2400	2670	2880	3120	3300	3480	
	900	1440	1800	2230	2660	2880	3200	3460	3740	3960	4180	
	1050	1680	2100	2600	3110	3360	3740	4030	4370	4620	4870	
	1200	1920	2400	2980	3550	3840	4270	4610	4990	5280	5570	
800	450	1440	1800	2230	2660	2880	3200	3460	3740	3960	4180	
	600	1920	2400	2980	3550	3840	4270	4610	4990	5280	5570	
тwo	750	2400	3000	3720	4440	4800	5340	5760	6240	6600	6960	
MODULES	900	2880	3600	4460	5330	5760	6410	6910	7490	7920	8350	
	1050	3660	4200	5210	6220	6720	7480	8060	8740	9240	9740	
	1200	3840	4800	5950	7100	7680	8540	9220	9980	10560	11140	
	1350	4320	5400	6700	7990	8640	9610	10370	11230	11880	12530	
	1500	4800	6000	7440	8880	9600	10680	11520	12480	13200	13920	
1200	600	2880	3600	4460	5330	5760	6410	6910	7490	7920	8350	
	750	3600	4500	5580	6660	7200	8010	8640	9360	9900	10440	
THREE	900	4320	5400	6700	7990	8640	9610	10370	11230	11880	12530	
MODULES	1050	5040	6300	7810	9320	10080	11210	12096	13100	13860	14620	
	1200	5760	7200	8930	10660	11520	12820	13820	14980	15840	16700	
	1350	6480	8100	10040	11990	12960	14420	15550	16850	17820	18790	
	1500	7200	9000	11160	13320	14400	16020	17280	18720	19800	20880	
	1650	7920	9900	12280	14650	15840	17620	19010	20590	21780	22970	
	1800	8640	10800	13390	15980	17280	19220	20740	22460	23760	25060	
1600	900	5760	7200	8930	10660	11520	12820	13820	14980	15840	16700	
	1050	6720	8400	10420	12430	13440	14950	16130	17470	18480	19490	
FOUR	1200	7680	9600	11900	14210	15360	17090	18430	19970	21120	22270	
MODULES	1350	8640	10800	13390	15980	17280	19220	20740	22460	23760	25060	
	1500	9600	12000	14880	17760	19200	21360	23040	24960	26400	27840	
	1650	10560	13200	16370	19540	21120	24500	25340	27460	29040	30630	
	1800	11520	14400	17860	21310	23040	25630	27650	29950	31680	33410	
	1950	12480	15600	19340	23090	24960	27770	29950	32450	34320	36190	
	2100	13440	16800	20830	24860	26880	29900	32260	34940	36960	38980	
2000	1050	8400	10500	13020	15540	16800	18690	20160	21840	23100	24360	
	1200	9600	12000	14880	17760	19200	21360	23040	24960	26400	27840	
FIVE	1350	10800	13500	16740	19980	21600	24030	25920	28080	29700	31320	
MODULES	1500	12000	15000	18600	22200	24000	26700	28800	31200	33000	34800	
	1650	13200	16500	20460	24420	26400	29370	31680	34320	36300	38280	
	1800	14400	18000	22320	26640	28800	32040	34560	37440	39600	41760	
	1950	15600	19500	24180	28860	31200	34710	37440	40560	42900	45240	
	2100	16800	21000	26040	31080	33600	37380	40320	43680	46200	48720	
	2250	18000	22500	27900	33300	36000	40050	43200	46800	49500	52200	
	2400	19200	24000	29760	35520	38400	42720	46080	49920	52800	55680	
2400	1200	11520	14400	17860	21310	23040	25630	27650	29950	31680	33400	
	1350	12960	16200	20090	23980	25920	28840	31100	33670	35640	37580	
SIX	1500	14400	18000	22320	26640	28800	32040	34560	37440	39600	41760	
MODULES	1650	15840	19800	24550	29300	31680	35240	38020	41180	43560	45940	
	1800	17280	21600	26780	31970	34560	38450	41470	44930	47520	50110	
	1950	18720	23400	29020	34630	37440	41650	44930	48670	51480	54290	
	2100	20160	25200	31250	37300	40320	44860	48380	52420	55440	58460	
	2400	23040	28800	35710	42620	46080	51260	55300	59900	63360	66820	

The pressure loss data above relates to a straight attenuator 1200mm long. The following factors are applicable to other lengths:

Length 'L' (mm)	600	900	1200	1500	1800	2100	2400
Δ p Factor	x 0.90	x0.95	0	x1.05	x1.10	x1.15	x1.20

For splitter bend attenuators add 50% to the pressure loss for the straight attenuator.

The pressure loss data above relates to a straight attenuator 1200mm long. The following factors are applicable to other lengths:

Length 'L' (mm)	600	900	1200	1500	1800	2100	2400
∆ p factor	x0.90	x0.95	0	x1.05	x1.10	x1.15	x1.20

For splitter bend attenuators add 50% to the pressure loss for the straight attenuator.

Weight SA20 Cased Attenuator

Weight SAS Splitters Only

Order Details

Airways in mm 🛛 🗕

Width	SA20-75 SA20-100	275 300	550 600	825 900	1100 1200	1325 1500	1650 1800	1925 2100		Wid		One	Each Additional
(mm)	SA20-150 SA20-200	350 400	700 800	1050 1200	1400 1600	1750 2000	2100 -	-		Mod	ules	Module	Modules
Number o	of Modules	1	2	3	4	5	6	7		Length	Height		
Length 'L' (mm)	Height 'H' (mm)			Weigh	nt (kg ± 10%	;)				'L' (mm)	'H' (mm)	Weight	(kg ± 10%)
'L' (mm) 'H' (mm) 600 300 16 26 36 46 600 23 36 49 62 900 30 46 62 78 1200 37 56 75 93 1500 - 666 82 110 1800 - - 106 132 900 300 22 36 49 63					46	56	64	70		600	300	6	5
	600	23	36	49	62	75	87	95			600	10	8
	900	30	46	62	78	94	110	120			900	14	10
		37				113	132	145			1200	17	13
						131	153	169			1500	20	15
						159	185	205			1800	27	17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	7								
	600 23 36 49 62 75 87 95 600 100 900 30 46 62 78 94 110 120 900 14 1200 37 56 75 93 113 132 145 1200 17 1500 - 66 82 110 131 153 169 1500 1500 20 1800 20 1800 20 1800 20 36 49 63 77 90 98 900 300 20 300 22 36 49 63 77 90 98 900 300 20 600 14 900 41 63 84 102 119 130 600 14 900 41 63 84 102 128 150 164 900 20 1200 50 76 101 127 <td< td=""><td>1</td><td>10</td></td<>				1	10							
				-		1						1	14
900 300 22 36 49 63 77 90 98 900 300 9 600 31 49 66 84 102 119 130 600 14 900 41 63 84 106 128 150 164 900 20 1200 50 76 101 127 153 179 197 1200 25 1500 - 90 116 148 178 207 229 1500 30 1800 - - 144 180 216 252 280 1800 39						1	18						
900 300 22 36 49 63 77 90 98 900 300 900 300 900 300 900 300 900 300 900 300 900 41 63 84 102 119 130 900 600 600 900 41 63 84 106 128 150 164 900 600 900 1200 50 76 101 127 153 179 197 1200 1200 1500 - 900 116 148 178 207 229 1500 1500 - 1800 - 1800 216 252 280 1800 - 1800 1200 300 1200 300 1200 300 1200 300 1200 300 1200 300 1200 300 1200 300 1200 300 1200 300 1200 300 1200 300 1200 <td>1</td> <td>21</td>					1	21							
	1800 - - 106 132 159 185 205 1800 1800 300 22 36 49 63 77 90 98 900 300 200 300 200 300 200 300 200 300 200 300 200 300 200 300 200 300 200 300 200 300 200 300 200 300 200 300 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 1200 200 1200 200 1200 <td></td> <td>25</td>			25									
1200					-	1	1			1200		1	8
				-		1						1	13
						1						1	18
						1						34	23
	1500	-	113	149	186	224	261	289			1500	42	27
1500	1800 300	- 30	- 51	182 72	227 92	273 113	319 134	355 144		1500	1800 300	55	31 10
1500			-			-	-			1500		13	
	600 900	44 58	70 90	96 122	121	147	173 218	188 239			600 900	21 30	16 22
	1200	58 72	90 110	122	154 185	186 222	218	239 286			1200	30	22
	1200	-	130	147	215	222	301	333			1200	51	32
		-	- 130	210	215	315	368	409			1800	66	32
1800			70	95	122	150	176	193		1800	300	17	11
1000			96	130	165	201	235	256		1000	600	28	19
			124	166	208	252	297	325			900	39	25
	1200	98	150	199	250	301	355	390			1200	55	32
	1500	-	178	230	293	351	411	454			1500	66	37
	1800	-	-	284	355	427	500	554			1800	78	45
2100	300	46	78	108	140	172	203	219		2100	300	19	13
	600	67	107	146	186	227	265	290			600	30	19
	900	89	138	187	236	286	335	365			900	44	28
	1200	110	167	225	284	340	400	440			1200	61	35
	1500	-	200	261	330	398	464	513			1500	75	44
	1800	-	-	322	401	485	565	629			1800	88	52

NOTE:

The data below should not be used where Melinex (polyester membrane) faced attenuators are rquired, since the use of the membrane modifies acoustic performance. Performance requirements higher than shown in Table 3 should be referred to SAFID for selection.

W = 2100mm H = 1800mm L = 2100mm

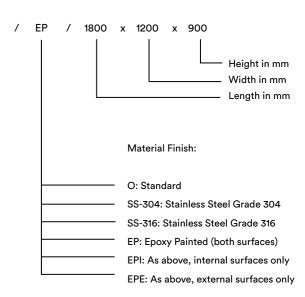
Nomenclature:

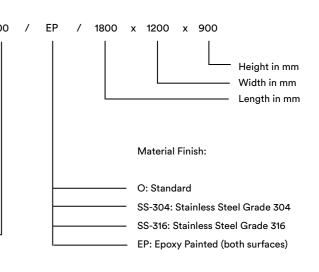
W in mm : Width inside duct. H in mm : Height in duct. L in mm : Length

d in cm : Splitter thickness

- s in mm : Airway width.
- V in I/s : Volume flow rate.

vt in m/s : Face velocity based on V ÷ (W x H x 1000).


 $\Delta \mathbf{p}$ in Pa : Pressure loss.


fm in Hz : Octave centre frequency. d_e in dB : Insertion loss. NC in dB : Noise criterion

Order Code for Cased Atten	ator SA / I	M / 20-100
Attenuator Type		
Type Suffix:		
O: Standard		
H: Horizontal Airways		-
HP: High Pressure Casing		-
M: Melinex infill wrap		-
BV: Bend Vertical		-
BH: Bend Horizontal		-
AF: Angle Flange Connections		-
X: Evase Tail		-
U: Without perforated sheet		
Splitter thickness in cm		

Order Code for Splitter	SAS / M / 20-10
Attenuator Type	
Type Suffix:	
O: Standard	
Splitter thickness in cm	

ORDER REFERENCE DETAILS

CYNDRICAL SOUND ATTENUATORS

Specifications

Cased Attenuators

Type SA splitter attenuator, incorporating aerodynamic splitters and side liners with erosion protected Class O acoustic infill covered by perforated sheet metal. Casing construction conforms with SMACNA & DW 144 Standards. Flange connections are SAF -30 or SAF - 35 slide on type.

Splitters Only

Type SAS splitters only, for installation in ductwork by others, featuring aerodynamic leading and trailing edges with erosion protected Class O acoustic infill covered by galvanized perforated sheet metal. The splitter frame is manufactured from Ga.20 galvanized sheet metal.

Order Example

Standard For Sound Attenuator Make : SAFID Type : SA20-100 / 1800 × 1200 × 900 Qty:1

Standard For Splitter Make : SAFID Type : SAS20-100 / 1800 × 1200 × 900 Qty:1

INTRODUCTION TO CYNDRICAL SOUND ATTENUATORS

Introduction

For many years noise was something to be tolerated. Unpleasant perhaps, but no more than that.

While it has been recognised for many years that the exposure of work-people to noise is hazardous and that noise-induced hearing loss cannot be corrected to any significant degree by means of medical treatment. The cost of ignoring noise is the impaired hearing of factory workers, an inability to work properly under almost unbearable sound levels, and a whole variety of social effects.

In schools, offices, hospitals, noise can interfere with communication and disrupts concentration. In any building project where consideration is given to the internal or external acoustic environments, it is necessary to formulate certain targets at the preliminary planning stages in order that desired comfort conditions are attained.

Mechanical equipment noise is one of the major sources of unwanted noise in a building. The primarily considerations given to the selection and use of mechanical equipment in buildings have generally been only those directly related to the intended use of the equipment. However, with the trend towards light weight building structures and variable-volume air distribution systems, the noise generated by mechanical equipment and the design of equipment spaces should not only be undertaken with an emphasis on the intended uses of the equipment, but also with a desire to provide acceptable noise levels in the occupied spaces of the building in which the equipment is located.

CYNDRICAL SOUND ATTENUATORS

Test Method

All SAFID attenuators are tested in accordance with BS 4718 : 1971.

The laboratory measurement of insertion loss is defined as the arithmetic difference in the sound level of an electronically generated noise produced upstream of the test sample location with and without the test sample installed, when measured downstream of the test sample location.

The test ducting is assembled such that one end is located into a plenum containing the sound source and the outlet is fed into the 300 cubic metres reverberation room.

Static insertion loss is measured by placing a speaker in the duct and then measuring the noise levels in the test chamber with and without the attenuator. The difference between the measurements is calculated to give the insertion loss.

For the regenerated noise, measurements are made of the noise generated by air flowing through the duct system alone. Part of the duct work is then replaced by attenuator and the noise is measured again. The noise due to this system is then deducted from the noise measured with the attenuator to give the regenerated noise due solely to the attenuator.

CYNDRICAL SOUND ATTENUATORS

Description

The cylindrical attenuators are prefabricated sections of double wall ductwork with solid outer shell and perforated inner shell. The space between the two shells are usually filled with acoustic infill. It is designed for reducing fan noise, meeting specified noise levels such as NC or NR.

Construction

Type SAC attenuators are available in a size range based upon ISO standards. Two lengths are catalogued, nominally equivalent to one times inside duct diameter with increased lengths available where higher acoustic performance is required. Alternative sizes and end connection types can be provided.

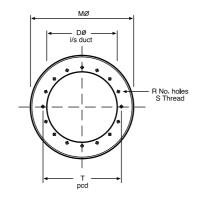
Standard attenuator casings are manufactured from galvanized sheet metal Ga.20 minimum. Casings are constructed with grooved seams with a mastic sealant; casing thickness complies with SMACNA standards and DW 144 Class B ductwork code. End plates contain threaded inserts M6-M10 as standard depending upon attenuator size. The attenuators contain acoustic infill has a glass cloth facing and is contained behind galvanized perforated sheet metal; this dual protection prevents damage and fibre erosion up to 30 m/s airway velocity.

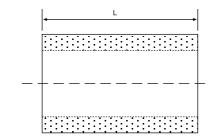
Alternative Construction

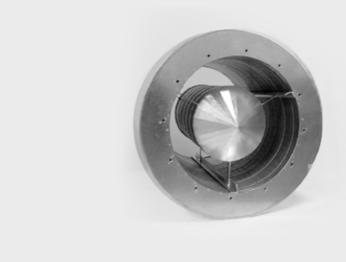
SACH

Type SACH; as for type SAC but with the casing thickness increased to comply with ductwork codes SMACNA standards - high pressure and DW 144 Class C or D.

SACM


Type SACM; as for type SAC but the acoustic infill is enveloped in a Melinex polyester film.


Sectionalised Construction


Attenuators would normally be supplied split on length when the "L" dimension exceeds 2000mm, for site assembly by others. Coupling angles are supplied.

The assembly of sectionalised attenuators is on site, by others. SAFID will provide full details of attenuator configuration and assembly.

Dimensions

Description

The podded cylindrical attenuators are prefabricated sections of double wall ductwork with solid outer shell, perforated inner shell and incorporates an aerodynamically efficient concentric pod. The space between the two shells and pod are usually filled with acoustic infill. It is designed for reducing fan noise, meeting specified noise levels such as NC or NR.

Construction

Type SACP attenuators are available in a size range based upon ISO standards. Two lengths are catalogued, nominally equivalent to one times inside duct diameter with increased lengths available where higher acoustic performance is required. Alternative sizes and end connection types can be provided.

Standard attenuator casings are manufactured from galvanized sheet metal Ga.20 minimum. Casings are constructed with grooved seams with a mastic sealant; casing thickness complies with SMACNA standards and DW 144 Class B ductwork code. End plates contain threaded inserts M6-M10 as standard depending upon attenuator size. The attenuators contain acoustic infill has a glass cloth facing and is contained behind galvanized perforated sheet metal; this dual protection prevents damage and fibre erosion up to 30 m/s airway velocity.

Alternative Construction

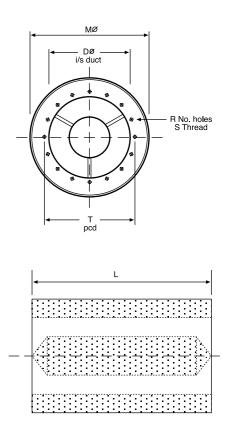
SACPH

Type SACPH; as for type SACP but with the casing thickness increased to comply with ductwork codes SMACNA standards - high pressure and DW 144 Class C or D.

SACPM

Type SACPM; as fo type SAC but the acoustic infill is enveloped in a Melinex polyester film.

CYNDRICAL SOUND ATTENUATORS


SACP

Sectionalised Construction

Attenuators would normally be supplied split on length when the "L" dimension exceeds 2000mm, for site assembly by others. Coupling angles are supplied.

The assembly of sectionalised attenuators is on site, by others. SAFID will provide full details of attenuator configuration and assembly.

Dimensions

ATTENUATOR SELECTION

Acoustic Performance

Performance

Attenuator performance is derived from tests meeting the requirements of BS 4718 : 1971.

Cylindrical attenuators follow a similar principle, however, in this case the splitter consisting of a pod in the middle of a lined cylindrical duct.

Attenuator selection is based on the static insertion loss performance, the aerodynamic resistance or pressure drop, and the regenerated sound power levels. Static insertion loss figures are given in the table.

Full regenerated noise data is available for SAFID cylindrical attenuators, to enable installed Insertion Loss to be calculated.

Pressure loss data relates to pod type attenuators and assumes that the airflow to the attenuator is uniform over the face, in a duct to duct layout. Units installed in situations leading to poor inlet or discharge conditions could incur pressure drops higher than catalogued. Podless attenuators have a pressure loss similar to an equivalent length of ductwork.

For insertion loss data for Melinex faced attenuators refer to SAFID.

Nomenclature

L in mm : Length D in mm : Inside diameter V in I/s : Volume flow rate **∆p in Pa :** Pressure loss f_m in Hz : Octave centre frequency D_e in dB : Insertion loss

3 4 5 6 78 9 10

3 4 5 6 78 9 10 15 20

Volume flow rate x 1000 in I/s

30 40 50

Volume flow rate x 1000 in I/s

Pressure Loss

0405 07

1.5 2

Pressure loss for type SACP-2D

a

9

4

0.40.5 0.3

Pressure loss for type SACP-1D

سـافىد SAFID

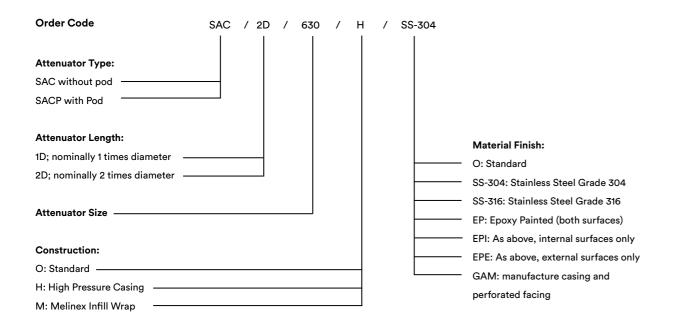
Acoustic Performance

Att	enuator		Sertion Los		ve Centre	Frequency	v (Hz)		
Size	Туре	63	125	250	500	1000	2000	4000	8000
250	SAC-1D	2	3	6	11	12	7	6	4
	SAC-2D	4	5	10	21	22	13	10	8
315	SAC1-D	2	3	6	12	11	7	6	4
355									
400	SAC2-D	4	5	10	21	22	13	10	8
450									
	SACP-1D	5	6	10	16	22	24	20	15
	SACP-2D	9	12	18	30	44	48	38	29
500	SAC-1D	2	3	6	11	12	7	6	4
560									
630	SAC-2D	4	5	10	21	20	10	9	6
710									
800	SACP-1D	5	6	10	16	22	23	17	12
900									
	SACP-2D	9	12	18	30	44	45	33	24
1000	SAC-1D	2	3	6	11	8	5	4	3
1120									
1250	SAC-2D	4	5	10	21	16	9	8	5
1400									
1600	SACP-1D	5	6	10	16	22	22	15	11
	SACP-2D	9	12	18	30	44	42	29	21

Weights

		Dimension	is (End Plat	e for Flang	e Connecti	on)			Weigh	ts (kg)	
Unit	D	М	L	L	т	R	S	SAC	SAC	SACP	SACP
Size	f	f	1D	2D	pcd	No. of Holes	Thread Size	1D	2D	1D	2D
250	256	456	250	500	286	6	M6	9	13	-	-
315	322	522	300	600	356	8	M8	11	15	14	20
355	361	561	350	700	395	8	M8	15	21	20	28
400	404	604	400	800	438	12	M8	18	27	26	36
450	453	653	450	900	487	12	M8	24	35	34	42
500	507	707	500	1000	541	12	M8	29	41	41	57
560	564	764	550	1100	605	16	M10	35	50	50	70
630	638	838	600	1200	674	16	M10	42	58	58	82
710	715	915	700	1400	751	16	M10	51	72	72	100
800	801	1001	800	1600	837	24	M10	58	82	79	111
900	898	1098	900	1800	934	24	M10	70	100	97	135
100	1007	1207	1000	2000	1043	24	M10	95	135	120	185
1120	1130	1330	1100	2200	1174	24	M10	115	160	145	215
1250	1267	1467	1250	2500	1311	24	M10	130	180	165	240
1400	1421	1622	1400	2800	1465	24	M10	210	420	270	520
1600	1593	1793	1600	3200	1637	32	M10	250	490	320	620

SILENCERS


Insertion Loss (dB)

ORDER REFERENCE DETAILS

SAFID

Order Details

Specification Text

Type SAC/SACP cylindrical attenuators incorporating erosion protected Class O acoustic infill covered by perforated sheet metal. The casing is manufactured to DW 144 Class B medium pressure construction from galvanized sheel metal of the appropriate thickness. End plates fitted with threaded nut inserts.

Order Example

Make : SAFID Type: SAC-2D/630/HP/SS-304 Qty:1

CROSSTALK ATTENUATORS

Introduction

The fan is not the only source of airborne sound power which can be transmitted through ductworks. Just as sound power can come out of ducts through air devices in rooms, it can also enter these openings. If two rooms are served by branches on a common duct system or if walls or partitions has air transfer openings, the greater possibility of sound to transmit from one room to adjoining room. Sound in one room which can be transmitted to adjoining room may came from many sources such as raised voice, office equipments or machinery. This sound path is called crosstalk. A suitable method of preventing or reducing crosstalk to attain the required room noise level is by installing crosstalk attenuator.

Application

The crosstalk attenuators are commonly used to prevent noise transmission via common ceiling, duct system or in air transfer openings on walls or partitions between adjoining rooms.

These units are designed and built for optimum noise control in a situation where the noise in the first room is clearly heard in the second room.

CROSSTALK ATTENUATOR

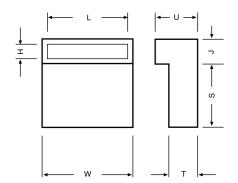
SCT SERIES

Description

The crosstalk attenuators are prefabricated sections of ductwork with acoustic lining.

It is designed to avoid noise radiated from a room or from a duct termination which is connected via a main duct, to a branch duct leading to another room. Airflow is permitted whilst noise transfer is limited.

Construction


Type SCTL attenuators have been designed to avoid noise interference between interconnected rooms. It is used as air transfer attenuators between adjoining areas where the acoustic integrity of a common partition or ceiling needs to be maintained.

Casing are manufactured from galvanized sheet metal Ga.20, with spot welded seams. The acoustic lining complies with Class O Building Regulations and has a glass tissue facing for erosion protection. The units may be supplied with one or two eggcrated grilles in natural anodised aluminium. Colour paint finishes are available to order.

Dimensions

Type SCTL

1700011

Standard Sizes

Unit Size	н	L	J	w	т	U	s
1	100	550	140	590	100	120	760
2	100	700	140	740	100	120	760
3	100	900	140	940	100	120	760
4	100	1000	140	1040	100	120	760
5	100	1200	140	1240	100	120	760

Optional Grilles: Eggcrate Pattern

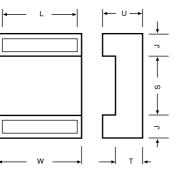
Standard Supply: For Type SCTL One no.

	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	-	_	_	_	_	_	_	_	_	_	-	-	-	-	-	-	_
L								L	L	L	L	L	L	L	L	L	1	1				L	L	L	L	L	L	L	L	L	L	1	1					L	L	L	L	T.	1	1	1	1	
Г	Т						Г	Г	Г	Г	Г	Г	Г	Т	Т	Т	Т	Т				Г	Г	Г	Г	Г	Т	Т	Т	Т	Т	Т	Т	Т				Г	Г	Г	Т	Т	Т	Т	Т	Т	Т
Г								Г	Г	Г	Г	Т	Г	Т	Т	Т	Т	T				Г	Г	Г	Г	Г	Т	Т	Т	Т	Т	Т	Т	1				Г	Г	Т	Т	Т	т	т	т	т	
r	1					F	F	F	F	t	t	t	t	t	t	t	t	1				F	t	t	t	t	t	t	t	t	t	t	t	1				F	t	t	t	t	t	T	T	T	
F	1							Г	Г	t	t	T	t	T	T	T	T	1				F	t	t	T	t	T	T	T	T	T	T	1	1				F	T	t	T	T	T	T	T	T	
F	1							F	F	t	t	t	t	t	t	t	t	1				F	t	t	t	t	t	t	t	t	t	t	+	1				t	t	t	t	t	Ŧ	Ŧ	+	+	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Description

The crosstalk attenuators are prefabricated sections of ductwork with acoustic lining.

It is designed to avoid noise radiated from a room or from a duct termination which is connected via a main duct, to a branch duct leading to another room. Airflow is permitted whilst noise transfer is limited.


Construction

Type SCTU attenuators have been designed to avoid noise interference between interconnected rooms. It is used as air transfer attenuators between adjoining areas where the acoustic integrity of a common partition or ceiling needs to be maintained.

Casing are manufactured from galvanized sheet metal Ga.20, with spot welded seams. The acoustic lining complies with Class O Building Regulations and has a glass tissue facing for erosion protection. The units may be supplied with one or two eggcrated grilles in natural anodised aluminium. Colour paint finishes are available to order.

Dimensions

Type SCTU

CROSSTALK ATTENUATOR

SCT SERIES

Standard Sizes

Unit Size	н	L	J	w	т	U	S
1	100	550	140	590	100	120	760
2	100	700	140	740	100	120	760
3	100	900	140	940	100	120	760
4	100	1000	140	1040	100	120	760
5	100	1200	140	1240	100	120	760

Optional Grilles: Eggcrate Pattern

Standard Supply: For Type SCTU Two no.

	т	т	Г			Т																						Т							
			Г																																
Т	Т	Т	Г																									-							
	+																											-							
1	+	+		Н		+	1	-	Η	Н	Н		Н	Н			H	H	Н			-	-	-		1	-	-	-	-	Н	H			
-	+	+	+	Н	+	+	+	+				-							Н	-	H	-	+	-	+	+	-	+	-	-					-

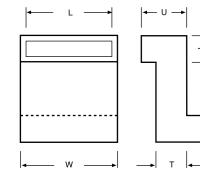
CROSSTALK ATTENUATOR

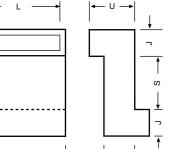
SCT Series

Description

The crosstalk attenuators are prefabricated sections of ductwork with acoustic lining.

It is designed to avoid noise radiated from a room or from a duct termination which is connected via a main duct, to a branch duct leading to another room. Airflow is permitted whilst noise transfer is limited.


Construction


Type SCTZ attenuators have been designed to avoid noise interference between interconnected rooms. It is used as air transfer attenuators between adjoining areas where the acoustic integrity of a common partition or ceiling needs to be maintained.

Casing are manufactured from galvanized sheet metal Ga.20, with spot welded seams. The acoustic lining complies with Class O Building Regulations and has a glass tissue facing for erosion protection. The units may be supplied with one or two eggcrated grilles in natural anodised aluminium. Colour paint finishes are available to order.

Dimensions

Type SCTZ

Standard Sizes

	Unit Size	н	L	J	w	т	U	s
_	1	100	550	140	590	100	120	760
	2	100	700	140	740	100	120	760
	3	100	900	140	940	100	120	760
	4	100	1000	140	1040	100	120	760
	5	100	1200	140	1240	100	120	760

Optional Grilles: Eggcrate Pattern

Standard Supply: For Type SCTZ Two No.

Г	Т	Т	Т	Т	Т	Г	Г	Г	Г	Г							Г									Т	Т	Т	Т			Т
Г	T	T	T	Т	Т	Г	Г		Г	Г	Г							П	П		П	П	П				1	1	1			T
Г	Т	Т	Т	Т	Т	Г	Г		Г	Г				Г			Г									Т	Т	Т	Т			Т
Г	t	t	t	t	t	t	t	F	F	F				F	F	F	F		П		П	П			1		1	1	1			1
Г	t	T	T	T	T	T	T																				1	1	1			1
F	t	t	t	t	t	t	t		F	F							F		Н	Н	Н	Н	Н		1	1	1	1	1			1

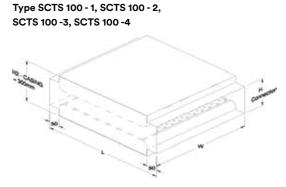
SCT 100 - 1
SCT 100 - 2
SCT 100 - 3
SCT 100 - 4

Description

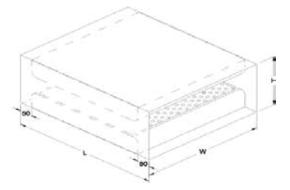
Prefabricated crosstalk attenuators Type SCTS and SCTBH with aerodynamic acoustic side liners has a high insertion loss designed to attenuate the airborne noise transmitted from a room to adjoining room through a duct termination which is connected to a common air duct system or through air transfer openings on walls or partions. Crosstalk attenuator will allow to pass the required airflow whilst noise transfer will be limited meeting the designed noise level in the occupied space.

Construction

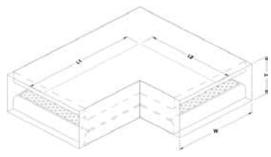
The casing and side liners are manufactured from galvanized sheet metal Ga.20. Casing is with lock formed seams, with mastic sealant. The construction complies with SMACNA and DW 144 standards. With spigot connections are supplied as standard.


The aerodynamic acoustic side liners contain acoustic infill which complies with Class O Building regulations. The infill has a glass tissue facing and is contained behind galvanized perforated sheet metal. This dual protection prevents damage and fiber erosion up to 30 m/s airway velocity. The side liners are radiussed at both ends to minimize air pressure loss and regenerated noise.

CROSSTALK ATTENUATOR



SCT Series


Dimensions

Type SCTS 100, SCTS 200

Type SCTS 100, SCTS 200 L = L1 + L2

ATTENUATOR PERFORMANCE

ســافىد SAFID

Type SCTL - SCTU - SCTZ

ATTENUATOR PERFORMANCE

The acoustic performance of Type SCTL, SCTU and SCTZ is designed to maintain the acoustic intergrity of a single thickness brick wall. Selection procedure is accordingly independent of source noise levels and noise requirements in the receiving room.

Pressure loss data includes an allowance for the use of standard eggcrate grilles. Alternative grille types are likely to increase resistance to airflow.

Table 2 incorporates guide figures from maximum pressure

loss against design noise level requirements, in order to limit attenuator self noise. These are shown as space noise criterion (NC) levels with 8dB room absorption.

Type SCTS and SCTBH

The acoustic performance of type SCTS and SCTBH is derived from tests meeting the requirements of BS 4718: 1971.

No deviations of insertion loss with airflow were recorded over the velocities employed in this brochure. The Static Insertion Loss figures are given in Table 3.

The total noise reduction figures shown in Table 3 gives an indication of the total room to room noise reduction that could be expected with a typical duct layout or with air transfer openings on walls or partitions. (Similar to Sound Reduction Index for a partition).

Table 5 incorporates guide figures for maximum duct velocity against design noise level requirements, in order to limit attenuator self noise. These are shown as space noise criterion (NC) levels with 8dB room absorption. Full regenerated noise data for SCTS attenuators, is available upon request.

Pressure loss data assumes that the airflow to the attenuator is uniform over the face, in a duct-to-duct layout. Units installed in situations leading to poor inlet or discharge conditions could incur pressure lossess higher than losses mentioned in the catalogue.

Table 1: Recommended Design Noise Criteria for Various Area Functions

Type of Room	NC
Section 1 - Studios and Auditoria	
Sound Broadcasting (general), TV (general), Recording Studio	20
TV (audience studio)	25
Concert Hall, Theatre	20 - 25
Lecture Theatre, Cinema	25 - 30
Section 2 - Hospitals	
Audiometric Room	20 - 25
Operating Theatre, Single Bed Ward	30 - 35
Multi-bed Ward,Waiting room	35
Corridor, Laboratory	35 - 40
Staff Room, Recreation Room	30 - 40
Section 3 - Hotels	
Individual Room, Suite	20 - 30
Ballroom, Banquet Room	30 - 35
Corridor, Lobby	35 - 40
Section 4 - Offices	
Boardroom, Large Conference Room	25 - 30
Small Conference Room, Executive Office, Reception Room	30 - 35
Open Plan Office	35
Drawing office, Computer Suite	35 - 45
Section 5 - Offices	
Bedroom	25
Living Room	30

Method of Selection

Type SCTL - SCTU - SCTZ

1. Select a suitable design NC level from Table 1.

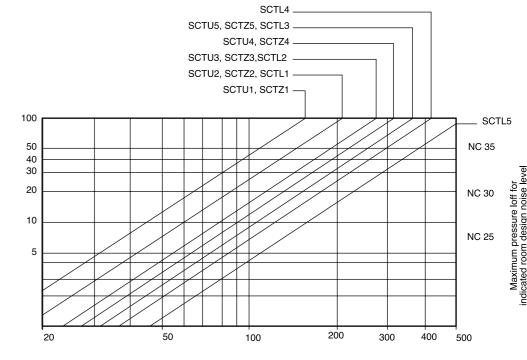
2. For required volume flow rate, select from Table 2 a unit size for an acceptable pressure loss (typically 20 Pa).

3. Ensure that the pressure loss is kept within the guide limit for the design room NC level.

4. Check unit dimensions for each model.situations leading to poor inlet or discharge conditions could incur pressure lossess higher than losses mentioned in the catalogue.

Table 2: Pressure Loss for Indicated Room Design Noise Level Requirements

Nomenclature


W in mm : Width inside duct. H in mm : Height in duct. L in mm : Length V in I/s : Volume flow rate. v_t in m/s : Face velocity based on V ÷ (W x H x 1000). $\Delta \mathbf{p}$ in Pa : Pressure loss. fm in Hz : Octave centre frequency. D_e in dB : Insertion loss.

NC in dB : Noise criterion

ΔP in Pa

-oss,

Ť

Volume flow rate, V in I/s

SCTL, SCTU AND SCTZ

SCT SERIES

SCT SERIES

Quick Selection

<u>Type SCTS 100 - 1, SCTS 100 - 2,</u> SCTS 100 - 3, SCTS 100 - 4

The quick selection method provides an attenuator selection for the control of speech crosstalk between rooms linked by a common duct system. The noise source has been taken as a "voice as loud as possible without strain" - approximately NC75/80dBA in a typical office environment. Attenuator length required depends upon the design background noise level for the receiving room.

1. Select a suitable design NC level from Table 1.

2. From Table 4 select the attenuator length shown against the NC level appropriate for the type of room being considered.

3. Using Table 5, select a cross section for the required volume flow rate and pressure loss/velocity. Discharge conditions could incur pressure lossess higher than catalog.

Table 3: Insertion Loss (D, in dB) - Type SCTS and SCTBH

Attenuator Length		Octave Centre Frequency (f _m in Hz)										
'L' (mm)	63	125	250	500	1000	2000	4000	8000				
500	5	7	10	15	23	17	13	11				
750	6	9	14	23	37	29	22	16				
1000	8	11	19	31	48	37	28	21				
1250	9	14	23	38	50	44	32	26				
1500	10	16	27	45	50	50	39	31				

Full Selection

<u>Type SCTS 100 - 1, SCTS 100 - 2,</u> SCTS 100 - 3, SCTS 100 - 4

When an attenuator performance requirement has been established following accurate acoustic analysis of source noise, transmission path and receiving room requirements, a suitable SCTS attenuator can be selected as follows.

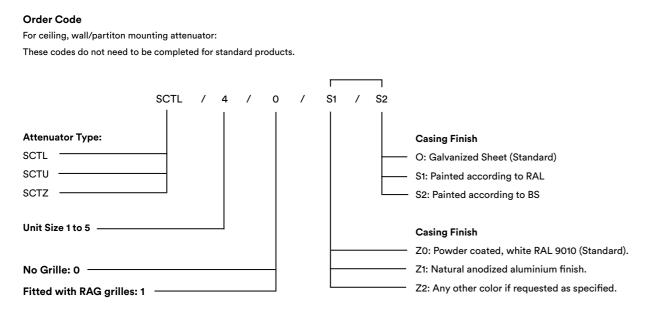
1. From Table 3 select an attenuator length to meet the required insertion loss.

2. Check the Self Noise guide on Table 5 to determine the maximum velocity for the room NC level required (consult Table 1).

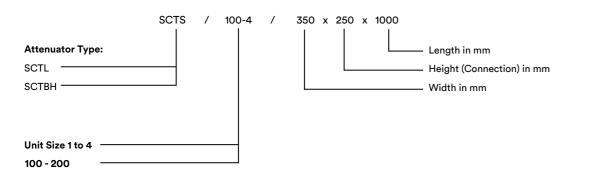
3. Using Table 5, select a cross section for the required volume flow rate and pressure loss/velocity.

Table 4: Quick Selection

Design Noise Criterion in Noise Critical Area	Attenuator Length Required (mm)	Total Noise Reduction at 500 Hz (dB)
NC 45	500	20
NC 40	750	28
NC 35	1000	36
NC 30	1250	43
NC 25	1500	50


		elocity uct size W x H)	2.0	3.0	4.0	5.0
Attenuator Type	Self Noise Guide	against Velocity	NC 25	NC 30	NC 35	NC 40
	Width 'W' (mm)	Height 'H' (mm)		Volume Flow F	Rate (litre/second)	
SCTS 100-1	100	100	20	30	40	50
	150	100	30	45	60	75
	200	100	40	60	80	100
essure loss (∆p in F	Pa)	1	< 5	< 5	6	10
SCTS 100-2	100	150	30	45	60	75
	150	150	45	70	90	115
F	200	150	60	90	120	150
	250	150	75	115	150	190
	300	150	90	135	180	225
essure loss, (∆p in F	°a)		< 5	8	14	22
SCTS 100-3	100	200	40	60	80	100
	150	200	60	90	120	150
	200	200	80	120	160	200
	250	200	100	150	200	250
	300	200	120	180	240	300
	350	200	140	210	280	350
	400	200	160	240	320	400
essure loss (∆p in F	Pa)	•	6	14	25	39
SCTS 100-4	100	250	50	75	100	125
	150	250	75	115	150	190
	200	250	100	150	200	250
	250	250	125	190	250	315
	300	250	150	225	300	375
	350	250	175	265	350	440
	400	250	200	300	400	500
	500	250	250	375	500	625
essure loss (∆p in F	2a)		10	22	39	60

NOTE The total noise reduction at 500 Hz shown in Table 4 includes 5dB room absoption.



Order Details

Order Code

For ceiling, wall/partiton mounting attenuator:

Specifications

Attenuator Type SCTL · SCTU · SCTZ

Type SCTL, SCTU or SCTZ crosstalk attenuator, incorporating erosion protected Class O acoustic infill. The casing is manufactured from Ga.20 galvanized steel sheet metal with spot welded seams.

Attenuators may be supplied with standard Return Air Grilles (RAG) if required.

For Duct, Wall/Partition Mounting: Attenuator Type SCTS and SCTBH Type SCTS or SCTBH crosstalk attenuator, incorporating aerodynamic side liners with erosion protected Class O acoustic infill covered by perforated sheet metal. The attenuator casing is manufactured to DW 144 Class B medium pressure cosntruction from Ga.20 galvanized steel sheet metal. The attenuators are provided with spigot end connections.

Order Example

For Ceiling Wall/Partition Mounting: Make : SAFID Type:SCTL-4/0 Qty:1

For Duct Wall/Partition Mounting: Make: SAFID Type : SCTS 100-4 / 350 × 250 × 1000 Qty:1

Fax Transmission & Post to: 00 966 1 460 0589

6 December 2001

C/01/5L/0121/L12A/JTD/mth

Mr Jamal Jawhari Saudi Air Distribution Systems Co. Ltd (SAFID) P O Box 15300 Riyadh 11444 Kingdom of Saudi Arabia

Dear Mr Jawhari

Attenuator Tests - Catalogue Data

We have completed our calculations and extrapolations of the attenuator SIL test data. The table attached (Appendix A) contains the data for inclusion in the catalogue for the 4 types of attenuator SA20-75, SA20-100, SA20-150 and SA20-200's, for all lengths from 600mm to 2400mm.

The Static Insertion Loss, Generated Noise Level and Pressure Loss were tested in accordance with BS 4718:1971 "Methods of Test for Silencers for Air Distribution Systems". The standard lays down the methodology for taking measurements and calculating the values from those measurements and states the tolerances on the accuracy of the testing procedure.

The tables attached contain the relevant values taken from our laboratory test measurements and calculations/extrapolations and are adjusted in the normal fashion (eg. limiting the published Insertion Loss performance to 50 dB etc.)

The data for the catalogue (Appendix A) is attached.

If you have any questions please contact us.

Yours sincerely,

Jack Dalziel Consultant For and on behalf of Sound Research Laboratories Ltd

ATTENTUATOR TEST RESULTS

Sound Research Laboratories Limited

Consultants in Noise & Vibration

Head Office & Laboratory Holbrook House Little Waldingfield Sudbury, Suffolk CO10 0TH Tel: +44 (0)1787 247595 Fax: +44 (0)1787 248420 e-mail:srl@soundresearch.co.uk

Checked by

Registered Address: Holbrook House, Little Waldingfield Sudbury, Suffolk, CO10 0TH, UK Registered Number: 907694 England

London Office: Tel: +44 (0)20 7251 3585 Fax: +44 (0)20 7336 8880

Northern Office: Tel: +44 (0)161 929 5585 Fax: +44 (0)161 929 5582

Member of the Association of Voise Consultants

S SILENCER

ATTENTUATOR TEST RESULTS

Appendix A

SA20-75 Attenuators

Length (mm)	63	125	250	500	1k	2k	4 k	8k
0.6	9	13	22	36	45	39	33	29
0.9	10	16	27	41	49	47	38	33
1.2	11	18	31	46	50	50	43	38
1.5	12	21	36	50	50	50	48	42
1.8	13	24	41	50	50	50	50	46
2.1	14	26	45	50	50	50	50	50
2.4	15	29	50	50	50	50	50	50

SA20-100 Attenuators

Length (mm)	63	125	250	500	1k	2k	4k	8k
0.6	7	10	18	34	46	40	33	29
0.9	8	12	22	37	50	46	36	31
1.2	9	14	26	40	50	50	39	33
1.5	9	17	30	44	50	50	41	35
1.8	10	19	34	47	50	50	44	37
2.1	11	21	38	50	50	50	47	39
2.4	11	24	42	50	50	50	49	41

SA20-150 Attenuators

Length (mm)	63	125	250	500	1k	2k	4k	8k
0.6	8	12	17	34	44	28	23	22
0.9	8	14	20	37	47	32	26	24
1.2	9	15	23	40	50	36	29	26
1.5	10	17	26	43	53	40	32	28
1.8	11	18	29	46	57	44	35	31
2.1	11	20	32	49	40	48	38	33
2.4	12	21	35	50	50	50	41	35

SA20-200 Attenuators

Length (mm)	63	125	250	500	1k	2k	4k	8k
0.6	7	11	16	25	27	23	21	20
0.9	8	12	18	30	33	26	23	21
1.2	8	14	21	35	39	30	25	23
1.5	9	15	23	40	44	33	28	24
1.8	9	17	26	45	50	37	30	26
2.1	10	18	28	50	50	40	32	27
2.4	11	19	30	50	50	43	34	28

Dave Clarke

Associate Director

Sound Research Laboratories Ltd Tel: 01787 247595

For and on behalf of Sound Research Laboratories Ltd

C/01/5L/0121/L12A/JTD/mth 6 December 2001

Page 2 of 2

ACOUSTIC LOUVERS

ســافيد SAFID

ACOUSTIC LOUVERS

Introduction

There are many applications in the industry where large quantities of air must be drawn from the atmosphere. The equipment handling the air is frequently noisy and it is necessary to provide some attenuation between the air moving device and the exterior. We have already seen that this can be done with cylindrical or rectangular sound attenuators. However, in certain conditions it is more appropriate to use an acoustic louver which is a combination of a normal louver, as associated with air inlets to buildings, and attenuator.

They are frequently installed in the facades of buildings where they are architecturally acceptable and yet provide an adequate amount of attenuation to prevent creating unacceptably high noise levels outside. Effectively, an acoustic louver is a very short attenuator with a very large cross-sectional area, so it is appropriate where length is restricted but face area is not.

Description

Acoustic louvers provide a positive solution where acoustic performance is required from a weather louver. The acoustic performance for an acoustic louver is usually measured in terms of transmission loss. This enables a direct comparison to made between the performance of the louver and a solid wall which it probably replaces. Acoustic louvers as well as attenuators are frequently used in mechanical equipment rooms where a requirement for ventilation exists.

They are avilable in either steel or aluminum construction with standard and high acoustic performance options. A non-acoustic version having a complementary appearance is available and a variety of colored finishes may be specified.

ACOUSTIC LOUVER

SALS

سافید SAFID

Dimensions

SALS

SALS, SALD AND SALN

Description

Type SALS acoustic louvers provide a positive solution where acoustic performance is required from a weather louver. They are available in either steel or aluminum construction with 'single' or 'double bank' acoustic performance options. A non-acoustic version having a complementary appearance is available. A variety of coloured finishes may be specified.

Construction

Steel Construction

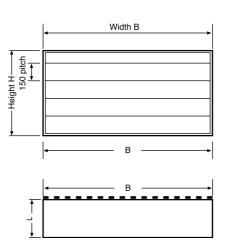
Casings are manufactured from galvanized sheet metal channels Ga.16 minimum. Galvanized louver blades are of aerodynamic section and are set at approx. 40° on 150mm pitches. Bird screens from 12×12×1mm galvanized wire mesh are fitted as standard to all types, except Type SALN when fitted with blanking plate.

Acoustic louver blades contain infill which complies with Class O Building Regulations. The infill has a glass cloth facing and is contained behind perforated metal; this dual protection prevents damage and fibre erosion up to 30 m/s airway velocity.

Aluminum Construction

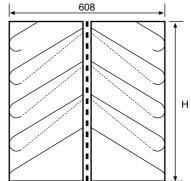
Construction is generally as for steel types described above except that the casing and louver blades are made from mill finish aluminum alloy, type 1050-H14.

Alternative Construction


SALD

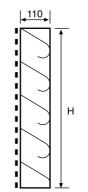
Type SALD; double bank acoustic louver comprising of two SALS type mounted back to back.

SALN

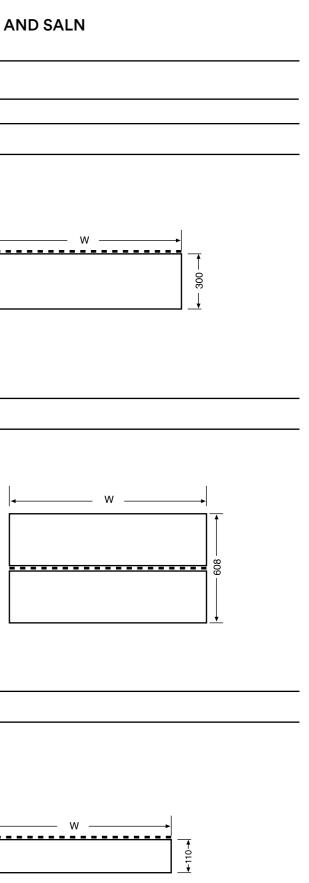

Type SALN; non-acoustic version with complementary appearance. Can be supplied with rear blanking plate to prevent air passage.

Dimensions

Dimensions in mm	Standard Sizes
w	300 to 1800 in increments of 150
Н	450 to 2400 increments of 150


SALD

300


н

SALN

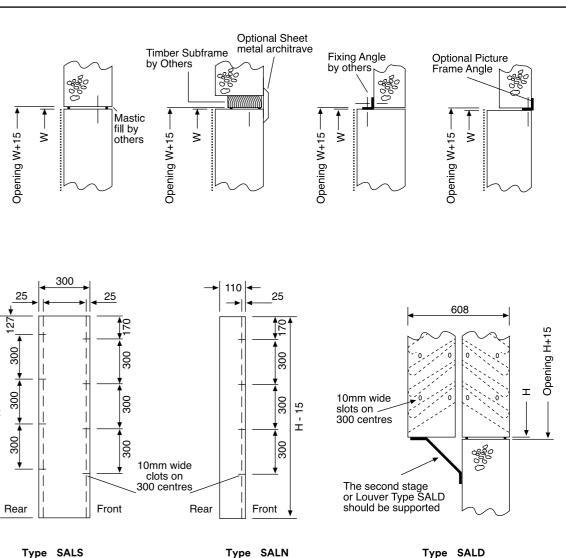
78

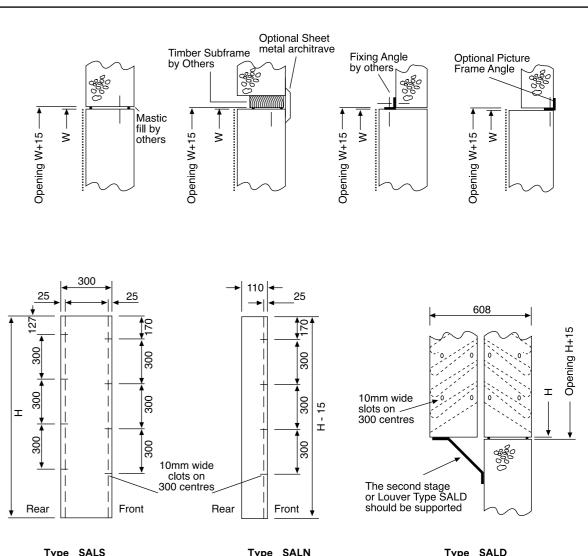
ACOUSTIC LOUVER

ACOUSTIC LOUVERS

سافيد SAFID

Installation


Type SALS, SALD, SALN


The vertical casing sides of the acoustic louvers are pre-slotted to facilitate fixing using a variety of acceptable methods. Where supplied, architraves and picture frames are supplied loose and undrilled.

On multisection units incorporating hollow section coupling frames, the frames are supplied drilled for easier site assembly. During fixing, the louvers should be set square and true in opening then wedged before fixing. Air gaps should be filled with a flexible mastic.

Installation and fixing items are not normally supplied; however, screws would be provided for use with our standard vertical box sections frames, where supplied.

Installation Details

SALS, SALD AND SALN

Dimensions

1.

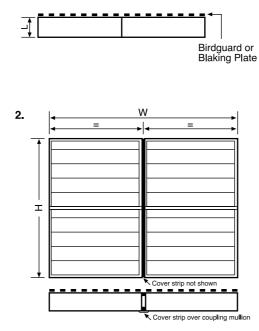
Sectionalized Construction

Acoustic louvers are normally supplied in sections when either of the following dimensions is exceeded:

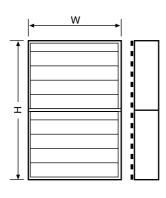
H = 2400 mm B = 1800 mm

Where louvers are in sections in both width and height, a 50×50×3 galvanized vertical box section frame is supplied to couple together adjacent sections. The weight of the upper section is borne by the coupling frame and not by the lower louver. Coupling frames are concealed behind a cover plate of material and finish to complement the louver.

The combinations illustrated on this page are available in louver Types SALS, SALD and SALN.


1. Split on width only.

- 2. Split on width and height.
- 3. Split on height only.


The assembly of sectionalised louvers is on site, by others. SAFID will provide full details of louver configuration and assembly.

Optional Features

Louvers can be supplied with matching sheet metal architrave or rolled metal angle picture frame. These would be supplied loose and undrilled for site fixing by others.

3.

ACOUSTIC LOUVERS

ACOUSTIC LOUVER INSTALLATION DETAILS

ACOUSTIC LOUVERS

ACOUSTIC LOUVER INSTALLATION DETAILS

Louver Selection

The acoustic performance needed to meet a particular design noise requirement can be calculated from other technical sources. Table 1 indicates the acoustic performance available from standard and high performance acoustic louvers.

From Table 2, select a louver size at a face velocity that gives an acceptable pressure loss. Check that louver self-noise will not infringe upon the design noise criterion by reference to the Self Noise Index, SNI.

The SNI gives an apporximation of regenerated noise from the louver due to air velocity. This is expressed as an NC value at 1 meter, 3 meters and 10 meters from the louver face. The louver selected should have an SNI at least 5 NC below the design noise criterion.

Nomenclature

L in mm : Length (in direction of airflow)

W in mm: Width

H in mm: Height

V in I/s: Volume Flow Rate

Vt in m/s: Face Velocity based on V ÷ (W x H x 1000)

∆p in Pa: Pressure Loss

fm in Hz: Octave Center Frequency

SRI in dB: Sound Reduction Index

SNI: Self Noise Index (equivalent to NC sound pressure level curve at free field distance shown)

Example

a) SRI Required @ fm

63	125	250	500	1k	2k	4k	8k	Hz
3	5	7	11	14	16	10	8	dB

b) Design Noise Criterion = NC50 at 3 meters from opening.

c) Volume Flow Rate, V = 12000 l/s.

d) Maximum Required Pressure Loss, Δp =50Pa

e) Maximum Required Height, H = 1200mm.

1) From Table 1, a standard performance Type SALS louver would meet the required acoustic performance.

2) From Table 2, the maximum permissible face velocity, for $\Delta p = 50$ Pa, is 2.8 m/s.

3) From Table 2, the maximum permissible face velocity, vt for an SNI of 50 minus 5 at 3m, is 4.9 m/s.

4) Size the louver at the limiting velocity of 2.8 m/s.

Required Louver Ara (m²) = $V \div (vt \times 1000)$ = 12000 ÷ (2.8 × 1000) = 4.290

Width (W Required) = 4.290 ÷ H (in meters) $= 4.290 \div 1.2$ = 3.575 meters = 3575 mm

Louver Selection: Type SALS; W x H, 3575 × 1200 (Specify materials and Finish)

Acoustic Performance

Acoustic louver performance has been derived from tests based on BS 2750. The test work was carried out using a reverberant room technique. Measurements with and without the test piece were compared to produce the 'Sound Reduction Index' (also known as 'Transmission Loss') of both the 'single bank' performance SALS acoustic louver and the 'double bank' performance version SALD.

The term 'Noise Reduction' is sometimes encountered. This refers to free field measurements taken in close proximity to the louver face rather than in the reverberant receiving room described in BS 2750. This method tends to improve upon the Sound Reduction Index figures by 6 dB.

However, for most applications the 'Sound Reduction Index' data is the more appropriate, since for all practical purposes it may be used in the same way as the static insertion loss of a duct attenuator.

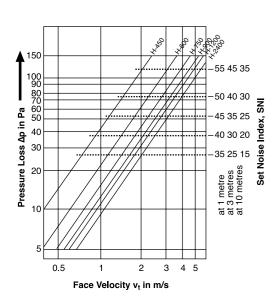
The aerodynamic profile of the acoustic louver blade ensures low pressure loss similar to conventional non-acoustic weather louvers of higher free area. The percentage free area varies with louver height, with the smaller louvers most affected by the restriction of the top and bottom dummy sections.

Table 1: Sound Reduction Index (SRI in dB)

Louver Type	Octave Center Frequency f ^m in Hz									
	63	125	250	500	1k	2k	4k	8k		
SALS	5	5	7	11	15	18	13	13		
SALD	8	9	12	19	28	30	23	22		

ACOUSTIC LOUVER SELECTION

Weights


Louver Type	Approximate Weights
SALSS	48kg/m² face area
SALSA	35kg/m² face area
SALD	as SALSS or SALSA x 2
SALN	as SALSS or SALSA x 0.5

ACOUSTIC LOUVERS PERFORMANCE

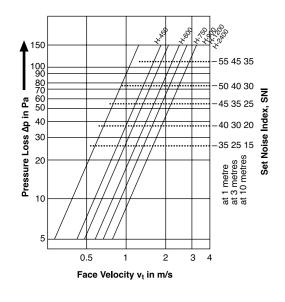
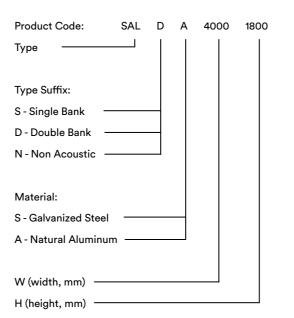
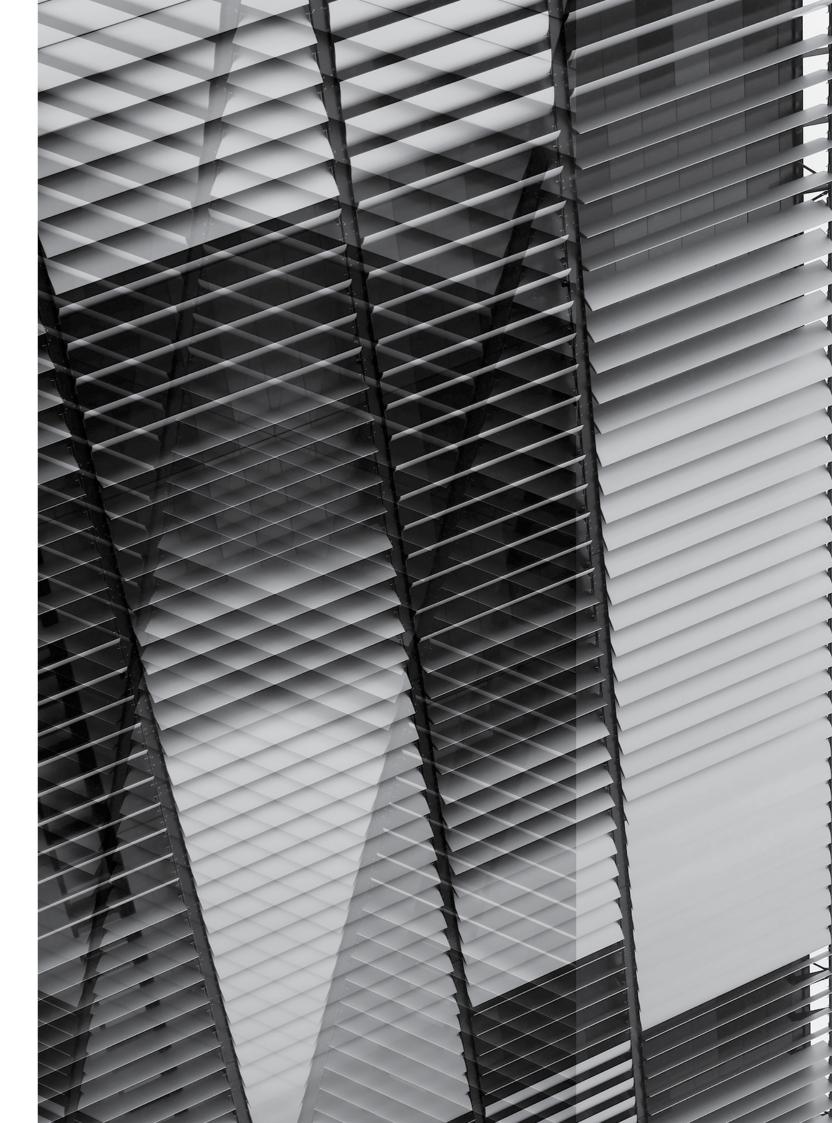


Table 2:

Type SALS (ducted from atmosphere)

Type SALD (ducted from atmosphere)


Order Details


Specifications Text

Type SALS acoustic louver constructed from either galvanized sheet steel or natural mill aluminum with finish as specified. 1.5 mm thick channel casing incorporates aerodynamic acoustic blades containing erosion protected Class O infill covered by perforated sheet metal. Casing sides are pre-slotted for fixing into a prepared opening.

ســافيد SAFID

Ordering

ACOUSTIC LOUVERS